Publications by authors named "Itsuki Ajioka"

Photon upconversion (UC) from red or near-infrared (NIR) light to blue light is promising for in vivo optogenetics. However, the examples of in vivo optogenetics have been limited to lanthanide inorganic UC nanoparticles, and there have been no examples of optogenetics without using heavy metals. Here the first example of in vivo optogenetics using biocompatible heavy metal-free TTA-UC nanoemulsions is shown.

View Article and Find Full Text PDF

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking.

View Article and Find Full Text PDF
Article Synopsis
  • * A new approach utilizes an amphiphilic peptide (Ncad-mRADA) combined with hydrogels to promote the migration of neuroblasts (young neurons) to damaged areas of the brain.
  • * Testing showed that Ncad-mRADA not only aided neuroblast movement toward injured sites but also significantly enhanced neuronal regeneration and recovery in neonatal brain injury, showcasing its potential as a regenerative therapy.
View Article and Find Full Text PDF

Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain.

View Article and Find Full Text PDF

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Takahiro Muraoka at Tokyo University of Agriculture and Technology and collaborators. The image depicts nanofiber formation of an amphiphilic peptide with a central alkylene chain that shows non-cell adhesive properties. Read the full text of the article at 10.

View Article and Find Full Text PDF

Background And Aims: Synthetic cyclin-dependent kinase (CDK) 4/6 inhibitors exert antitumor effects by forcing RB1 in unphosphorylated status, causing not only cell cycle arrest but also cellular senescence, apoptosis, and increased immunogenicity. These agents currently have an indication in advanced breast cancers and are in clinical trials for many other solid tumors. HCC is one of promising targets of CDK4/6 inhibitors.

View Article and Find Full Text PDF

Amphiphilic peptides bearing terminal alkyl tails form supramolecular nanofibers that are increasingly used as biomaterials with multiple functionalities. Insertion of alkylene chains in peptides can be designed as another type of amphiphilic peptide, yet the influence of the internal alkylene chains on self-assembly and biological properties remains poorly defined. Unlike the terminal alkyl tails, the internal alkylene chains can affect not only the hydrophobicity but also the flexibility and packing of the peptides.

View Article and Find Full Text PDF

Cell adhesion is a fundamental biological process involved in a wide range of cellular and biological activity. Integrin-ligand binding is largely responsible for cell adhesion with an extracellular matrix, and the RGD sequence is an epitope in ligand proteins such as fibronectin. The extracellular matrix consists of fibrous proteins with embedded ligands for integrins.

View Article and Find Full Text PDF

To facilitate efficient oxygen and nutrient delivery, blood vessels in the brain form three-dimensional patterns. However, little is known about how blood vessels develop stereographically in the neocortex and how they control the expansion and differentiation of neural progenitors during neocortical development. We show that highly vascularized and avascular regions are strictly controlled in a spatially and temporally restricted manner and are associated with distinct cell populations.

View Article and Find Full Text PDF

Photon upconversion (UC) from near-infrared (NIR) light to visible light has enabled optogenetic manipulations in deep tissues. However, materials for NIR optogenetics have been limited to inorganic UC nanoparticles. Herein, NIR-light-triggered optogenetics using biocompatible, organic TTA-UC hydrogels is reported.

View Article and Find Full Text PDF

Self-assembling peptides that are capable of adopting β-sheet structures can generate nanofibers that lead to hydrogel formation. Herein, to tune the supramolecular morphologies, mechanical properties, and stimuli responses of the hydrogels, we investigated glycine substitution in a β-sheet-forming amphiphilic peptide. Glycine substitution generally enhances conformational flexibility.

View Article and Find Full Text PDF

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation.

View Article and Find Full Text PDF

Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown.

View Article and Find Full Text PDF

Ischemic brain stroke is caused by blood flow interruption, leading to focal ischemia, neuron death, and motor, sensory, and/or cognitive dysfunctions. Angiogenesis, neovascularization from existing blood vessel, is essential for tissue growth and repair. Proangiogenic therapy for stroke is promising for preventing excess neuron death and improving functional recovery.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created two types of mice to study PARK17: Vps35 D620N knock-in mice that express a specific mutant protein, and Vps35 Del1 mice with a deletion in the gene.
  • * Findings indicated that the D620N mutation leads to a partial loss of VPS35 function, contributing to neurochemical changes and survival challenges in mice, thereby supporting the idea that genetic predispositions and age-related factors can influence the development of PARK17.
View Article and Find Full Text PDF

Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons.

View Article and Find Full Text PDF

The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles.

View Article and Find Full Text PDF

Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice.

View Article and Find Full Text PDF

Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer.

View Article and Find Full Text PDF

After brain injury, neuroblasts generated from endogenous neural stem cells migrate toward the injured site using blood vessels as a scaffold, raising the possibility of reconstructing blood vessel network scaffolds as a strategy for promoting endogenous neuronal regeneration. In this study, we designed biomaterials based on the components and morphology of blood vessel scaffolds, and examined their ability to guide the migration of neuroblasts into a brain lesion site in mice. Transplanted porous sponge containing components of the basement membrane (BM) matrix enhanced neuroblast migration into the lesion, and detailed morphological examination suggested that the infiltrating cells used the BM sponge as a migration scaffold.

View Article and Find Full Text PDF

Once neurons enter the post-mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re-enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated.

View Article and Find Full Text PDF

Aldolase C (Aldoc, also known as "zebrin II"), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes.

View Article and Find Full Text PDF

Cell cycle dysregulation leads to abnormal proliferation and cell death in a context-specific manner. Cell cycle progression driven via the Rb pathway forces neurons to undergo S-phase, resulting in cell death associated with the progression of neuronal degeneration. Nevertheless, some Rb- and Rb family (Rb, p107 and p130)-deficient differentiating neurons can proliferate and form tumors.

View Article and Find Full Text PDF