The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.
View Article and Find Full Text PDFMultiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs).
View Article and Find Full Text PDFWe report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton×years data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center.
View Article and Find Full Text PDFWe report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.
View Article and Find Full Text PDFThe selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described.
View Article and Find Full Text PDFThe selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the Rn emanation measurements performed for the XENON1T dark matter experiment.
View Article and Find Full Text PDFWe report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV.
View Article and Find Full Text PDFTransverse single-spin asymmetries of very forward neutral pions generated in polarized p+p collisions allow us to understand the production mechanism in terms of perturbative and nonperturbative strong interactions. During 2017, the RHICf Collaboration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized p+p collisions at sqrt[s]=510 GeV. The large nonzero asymmetries increasing both in longitudinal momentum fraction x_{F} and transverse momentum p_{T} have been observed at low transverse momentum p_{T}<1 GeV/c for the first time, at this collision energy.
View Article and Find Full Text PDFA search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun.
View Article and Find Full Text PDFWe present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for ~1/3 of those the anomaly is likely caused by a planetary companion.
View Article and Find Full Text PDFSearch results for nucleon decays p→e^{+}X, p→μ^{+}X, n→νγ (where X is an invisible, massless particle) as well as dinucleon decays np→e^{+}ν, np→μ^{+}ν, and np→τ^{+}ν in the Super-Kamiokande experiment are presented. Using single-ring data from an exposure of 273.4 kton·yr, a search for these decays yields a result consistent with no signal.
View Article and Find Full Text PDFSuper-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased.
View Article and Find Full Text PDFWe present the results of searches for nucleon decay via n→ν[over ¯]π0 and p→ν[over ¯]π+ using data from a combined 172.8 kt·yr exposure of Super-Kamiokande-I,-II, and-III. We set lower limits on the partial lifetime for each of these modes: τn→ν[over ¯]π0>1.
View Article and Find Full Text PDFBosonic superweakly interacting massive particles (super-WIMPs) are a candidate for warm dark matter. With the absorption of such a boson by a xenon atom, these dark matter candidates would deposit an energy equivalent to their rest mass in the detector. This is the first direct detection experiment exploring the vector super-WIMPs in the mass range between 40 and 120 keV.
View Article and Find Full Text PDFPhys Rev Lett
September 2014
The trilepton nucleon decay modes p→e+νν and p→μ+νν violate |Δ(B-L)| by two units. Using data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with no signal.
View Article and Find Full Text PDFUsing gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun.
View Article and Find Full Text PDFWe report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.
View Article and Find Full Text PDFSuper-Kamiokande atmospheric neutrino data were fit with an unbinned maximum likelihood method to search for the appearance of tau leptons resulting from the interactions of oscillation-generated tau neutrinos in the detector. Relative to the expectation of unity, the tau normalization is found to be 1.42 ± 0.
View Article and Find Full Text PDFWe present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.
View Article and Find Full Text PDFWe have searched for proton decays via p-->e;{+}pi;{0} and p-->micro;{+}pi;{0} using data from a 91.7 kt.yr exposure of Super-Kamiokande-I and a 49.
View Article and Find Full Text PDF