Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored.
View Article and Find Full Text PDFNeural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers.
View Article and Find Full Text PDFToday the high demand for electronics leads to massive production of waste, thus green materials based electronic devices are becoming more important for environmental protection and sustainability. The biomaterial based hydrogels are widely used in tissue engineering, but their uses in photonics are limited. In this study, silk fibroin protein in hydrogel form is explored as a bio-friendly alternative to conventional polymers for lens applications in light-emitting diodes.
View Article and Find Full Text PDFA novel flexible glucose biosensor using vertically aligned carbon nanotubes (VACNT) and a conjugated polymer (CP) was fabricated. A scaffold based on VACNT grown on aluminum foil (VACNT-Al foil) with poly (9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl)-end capped with 2,5-diphenyl-1,2,4-oxadiazole (PFLO) was used as the immobilization matrix for the glucose biosensor. Glucose oxidase (GOx) was immobilized on a modified indium tin oxide (ITO) coated polyethylene terephthalate (PET) electrode surface.
View Article and Find Full Text PDF