Mutational signature analysis promises to reveal the processes that shape cancer genomes for applications in diagnosis and therapy. However, most current methods are geared toward rich mutation data that has been extracted from whole-genome or whole-exome sequencing. Methods that process sparse mutation data typically found in practice are only in the earliest stages of development.
View Article and Find Full Text PDFHow the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit.
View Article and Find Full Text PDFMutational signatures are key to understanding the processes that shape cancer genomes, yet their analysis requires relatively rich whole-genome or whole-exome mutation data. Recently, orders-of-magnitude sparser gene-panel-sequencing data have become increasingly available in the clinic. To deal with such sparse data, we suggest a novel mixture model, Mix.
View Article and Find Full Text PDFBackground: Studies of cancer mutations have typically focused on identifying cancer driving mutations that confer growth advantage to cancer cells. However, cancer genomes accumulate a large number of passenger somatic mutations resulting from various endogenous and exogenous causes, including normal DNA damage and repair processes or cancer-related aberrations of DNA maintenance machinery as well as mutations triggered by carcinogenic exposures. Different mutagenic processes often produce characteristic mutational patterns called mutational signatures.
View Article and Find Full Text PDFThe characterization of mutational processes in terms of their signatures of activity relies mostly on the assumption that mutations in a given cancer genome are independent of one another. Recently, it was discovered that certain segments of mutations, termed processive groups, occur on the same DNA strand and are generated by a single process or signature. Here we provide a first probabilistic model of mutational signatures that accounts for their observed stickiness and strand coordination.
View Article and Find Full Text PDFKnowing the activity of the mutational processes shaping a cancer genome may provide insight into tumorigenesis and personalized therapy. It is thus important to characterize the signatures of active mutational processes in patients from their patterns of single base substitutions. However, mutational processes do not act uniformly on the genome, leading to statistical dependencies among neighboring mutations.
View Article and Find Full Text PDF