Ammonium secreted by the post-harvest pathogen Colletotrichum gloeosporioides during host colonization accumulates in the host environment due to enhanced fungal nitrogen metabolism. Two types of ammonium transporter-encoding genes, AMET and MEP, are expressed during pathogenicity. Gene disruption of AMET, a gene modulating ammonia secretion, showed twofold reduced ammonia secretion and 45% less colonization on avocado fruit, suggesting a contribution to pathogenicity.
View Article and Find Full Text PDFColletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize.
View Article and Find Full Text PDFHost-tissue alkalinization via ammonia accumulation is key to Colletotrichum spp. colonization. Using macroarrays carrying C.
View Article and Find Full Text PDFGenomic information of many fungi has been released but large scale functional genomic studies are still limited by a lack of high-throughput methods. The low rates of homologous recombination and low rates of transformation are limiting steps in filamentous fungi, but the molecular tools are also lagging behind. In this paper we describe two new high-throughput functional genomic tools for filamentous fungi that are based on the Gateway technology.
View Article and Find Full Text PDFMol Plant Microbe Interact
August 2002
The phytopathogenic fungus Alternaria alternata produces one endo-1,4-beta-glucanase, AaK1, which is an important factor in disease development in persimmon fruit. During growth of A. alternata in media containing acidified yeast extract or cell walls from persimmon fruit, the fungus secreted ammonia and raised the medium pH.
View Article and Find Full Text PDF