Publications by authors named "Itaru Yanagi"

The ionic current blockades when poly(dT) or dNTPs passed through SiN nanopores in an aqueous solution containing (NH)SO were investigated. The dwell time of poly(dT) in the nanopores in an aqueous solution containing (NH)SO was significantly longer compared to that in an aqueous solution that did not contain (NH)SO. This dwell time prolongation effect due to the aqueous solution containing (NH)SO was also confirmed when dCTP passed through the nanopores.

View Article and Find Full Text PDF

Backgrounds: The effectiveness of citizens' behavioral changes to prevent the spread of SARS-CoV-2, such as avoiding large social events, relies on science communication from policymakers and collective action among peer citizens. Extant studies recognize the potential effects of information stimuli on citizens' behavioral changes, including what epidemiological experts request () and what surrounding people behave (). Yet, they have insufficiently assessed the co-occurrence and possible interaction of multiple information stimuli.

View Article and Find Full Text PDF

In our previous studies, ultrathin SiN membranes down to 3 nm in thickness were fabricated using the poly-Si sacrificial layer process, and nanopores were formed in those membranes. The region of the SiN membrane fabricated using this process was small, and the poly-Si sacrificial layer remained throughout the other region. On the other hand, to reduce the noise of the current through the nanopore, it is preferable to reduce the capacitance of the nanopore chip by replacing the poly-Si layer with an insulator with low permittivity, such as SiO.

View Article and Find Full Text PDF

Nanopore-based biosensors have attracted attention as highly sensitive microscopes for detecting single molecules in aqueous solutions. However, the ionic current noise through a nanopore degrades the measurement accuracy. In this study, the magnitude of the low-frequency noise in the ionic current through a silicon nitride nanopore was found to change depending on the metal ion species in the aqueous solution.

View Article and Find Full Text PDF

For nanopore sensing of various-sized molecules with high sensitivity, the size of the nanopore should be adjusted according to the size of each target molecule. For solid-state nanopores, a simple and inexpensive nanopore fabrication method utilizing dielectric breakdown of a membrane is widely used. This method is suitable for fabricating a small nanopore.

View Article and Find Full Text PDF

Nanopore DNA sequencing offers a new paradigm owing to its extensive potential for long-read, high-throughput detection of nucleotide modification and direct RNA sequencing. Given the remarkable advances in protein nanopore sequencing technology, there is still a strong enthusiasm in exploring alternative nanopore-sequencing techniques, particularly those based on a solid-state nanopore using a semiconductor material. Since solid-state nanopores provide superior material robustness and large-scale integrability with on-chip electronics, they have the potential to surpass the limitations of their biological counterparts.

View Article and Find Full Text PDF

Nanopore DNA sequencing with a solid-state nanopore requires deceleration of the ultrafast translocation speed of single-stranded DNA (ssDNA). We report an unexpected phenomenon: controlled dielectric breakdown (CBD) with a divalent metal cation, especially Ca2+, provides a silicon nitride nanopore with the ability to decelerate ssDNA speed to 100 μs per base even after solution replacement. This speed is two orders of magnitude slower than that for CBD with a conventional monovalent metal cation.

View Article and Find Full Text PDF

A powerful DNA sequencing tool with high accuracy, long read length and high-throughput would be required more and more for decoding the complicated genetic code. Solid-state nanopore has attracted many researchers for its promising future as a next-generation DNA sequencing platform due to the processability, the robustness and the large-scale integratability. While the diverse materials have been widely explored for a solid-state nanopore, silicon nitride (SiN) is especially preferable from the viewpoint of mass production based on semiconductor fabrication process.

View Article and Find Full Text PDF

DNA sequencing via solid-state nanopores is a promising technique with the potential to surpass the performance of conventional sequencers. However, the identification of all four nucleotide homopolymers with a typical SiN nanopore is yet to be clearly demonstrated because a guanine homopolymer rapidly forms a G-quadruplex in a typical KCl aqueous solution. To address this issue, we introduced an alkaline CsCl aqueous solution, which denatures the G-quadruplex into a single-stranded structure by disrupting the hydrogen-bonding network between the guanines and preventing the binding of the K+ ion to G-quartets.

View Article and Find Full Text PDF

For the nanopore sensing of various large molecules, such as probe-labelled DNA and antigen-antibody complexes, the nanopore size has to be customized for each target molecule. The recently developed nanopore fabrication method utilizing dielectric breakdown of a membrane is simple and quite inexpensive, but it is somewhat unsuitable for the stable fabrication of a single large nanopore due to the risk of generating multiple nanopores. To overcome this bottleneck, we propose a new technique called "two-step breakdown" (TSB).

View Article and Find Full Text PDF

To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor.

View Article and Find Full Text PDF

The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a controlled dielectric breakdown (CDB) process into our system.

View Article and Find Full Text PDF

Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.

View Article and Find Full Text PDF

A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed.

View Article and Find Full Text PDF

To achieve DNA sequencing using a solid-state nanopore, it is necessary to reduce the electric noise current. The noise current can be decreased by reducing the capacitance (C) of the nanopore device. However, we found that an electric-charge difference (ΔQ) between the electrolyte in one chamber and the electrolyte in another chamber occurred.

View Article and Find Full Text PDF

DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead.

View Article and Find Full Text PDF

To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution.

View Article and Find Full Text PDF

To slow the translocation of single-stranded DNA (ssDNA) through a solid-state nanopore, a nanopore was narrowed, and the effect of the narrowing on the DNA translocation speed was investigated. In order to accurately measure the speed, long (5.3 kb) ssDNA (namely, ss-poly(dA)) with uniform length (±0.

View Article and Find Full Text PDF

To date, solid-state nanopores have been fabricated primarily through a focused-electronic beam via TEM. For mass production, however, a TEM beam is not suitable and an alternative fabrication method is required. Recently, a simple method for fabricating solid-state nanopores was reported by Kwok, H.

View Article and Find Full Text PDF