Publications by authors named "Itamar Liberman"

Article Synopsis
  • Electrocatalytic nitrite reduction (eNORR) is an innovative method for ammonia production, utilizing molecular catalysts that reduce nitrite to ammonia while enhancing performance with secondary functionalities.
  • The study demonstrates that incorporating a Fe-porphyrin catalyst into a 2D Metal-Organic Framework (MOF) enhances the efficiency of eNORR, achieving high faradaic efficiency (up to 90%) and increased reaction rates.
  • The research highlights the importance of proton-relaying agents, which improve catalytic activity by stabilizing reactive intermediates, providing valuable insights for optimizing heterogeneous electrocatalytic systems.
View Article and Find Full Text PDF

Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.

View Article and Find Full Text PDF

Mixed-metal metal-organic framework (MOF)-based water oxidation precatalysts have aroused a great deal of attention due to their remarkable catalytic performance. Yet, despite significant advancement in this field, there is still a need to design new MOF platforms that allow simple and systematic control over the final catalyst's metal composition. Here, we show that a Zr-BTB 2D-MOF could be used to construct a series of Ni-Fe-based oxide hydroxide water oxidation precatalysts with diverse Ni-Fe compositions.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are promising platforms for heterogeneous tethering of molecular CO reduction electrocatalysts. Yet, to further understand electrocatalytic MOF systems, one also needs to consider their capability to fine-tune the immediate chemical environment of the active site, and thus affect its overall catalytic operation. Here, we show that electrostatic secondary-sphere functionalities enable substantial improvement of CO -to-CO conversion activity and selectivity.

View Article and Find Full Text PDF

Electrochemically active Metal-Organic Frameworks (MOFs) have been progressively recognized for their use in solar fuel production schemes. Typically, they are utilized as platforms for heterogeneous tethering of exceptionally large concentration of molecular electrocatalysts onto electrodes. Yet so far, the potential influence of their extraordinary chemical modularity on electrocatalysis has been overlooked.

View Article and Find Full Text PDF

Metal oxides or sulfides are considered to be one of the most promising CO reduction reaction (CO RR) precatalysts, owing to their electrochemical conversion in situ into highly active electrocatalytic species. However, further improvement of the performance requires new tools to gain fine control over the composition of the active species and its structural features [e.g.

View Article and Find Full Text PDF

There is an on-going search for new earth-abundant electrocatalytic materials, suitable for replacing noble-metals as efficient accelerators of energy-conversion reactions. In this regard, over the last few years, metal-organic framework (MOF)-converted materials have demonstrated promising electrocatalytic properties. Nevertheless, the discovery of new catalytic materials requires development of methods combining high-throughput synthesis and electrochemical-activity screening.

View Article and Find Full Text PDF

The construction of artificial solar fuel generating systems requires the heterogenization of large quantities of catalytically active sites on electrodes. In that sense, metal-organic frameworks (MOFs) have been utilized to assemble unpreceded concentration of electrochemically active molecular catalysts to drive energy-conversion electrocatalytic reactions. However, despite recent advances in MOF-based electrocatalysis, so far no attempt has been made to exploit their unique chemical modularity in order to tailor the electrocatalytic function of MOF-anchored active sites at the molecular level.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have emerged as outstanding electrocatalysts for water oxidation. Commonly, MOFs are utilized for electrocatalytic water oxidation either in pristine or pyrolyzed form. Yet, despite significant advancements in their catalytic performance, further improvement requires new insights on the parameters influencing MOF-based catalysts activity.

View Article and Find Full Text PDF