Publications by authors named "Italo F Cuneo"

Cortical lacunae caused by drought, especially observed in hybrids originating from Vitis rupestris, disrupt the connection between roots and soil. Yet, the physiological processes behind lacuna formation during drought and its consistency across Vitis species remain unclear. Here, we used a root pressure probe to investigate fine root hydraulic and mechanical properties, in the arid-adapted R-65 and drought-susceptible 101-14Mgt cultivars.

View Article and Find Full Text PDF

The influence of the geographical location on the chemical composition of commercial Sauvignon Blanc wines was investigated. The assay was carried out on Sauvignon Blanc wines from three cold-climate valleys in Central Chile, Casablanca, Leyda, and San Antonio. The analyses revealed clear variations in some chemical parameters, especially in titratable acidity, which was higher in the geographical areas closest to the Pacific Ocean, such as the Leyda and San Antonio valleys.

View Article and Find Full Text PDF

Erosion and tillage changes negatively the soil physical structure, which directly impacts agricultural systems and consequently food security. To mitigate these adverse modifications, different polymeric materials from synthetic and natural sources, have been used as soil conditioners to improve the hydro-mechanical behavior of affected soils. One of the most interesting and used natural polymers is the alginate hydrogel.

View Article and Find Full Text PDF

Avocados ( Mill.) are one of the crops with the highest water footprints in Chile and the production is at risk due to severe and frequent droughts. The current production is mostly based on sexually (seed) propagated rootstocks, while clonally propagated rootstocks are on the rise.

View Article and Find Full Text PDF

Agricultural systems are facing the negative impacts of erosion and water scarcity, directly impacting the hydro-mechanical behavior of soil aggregation. Several technologies have been proposed to reduce hydro-mechanical soil-related problems in agriculture. Biopolymer-based hydrogels have been reported to be a great tool to tackle these problems in soils.

View Article and Find Full Text PDF

Diameter fluctuations of branches, shoots, or fruits are related to plant transpiration and water potential. In the past, several models have related dendrometric variables and evapotranspiration on a daily scale. However, trunk-branch shrinkage occurs only between dawn and midday, while evapotranspiration occurs most of the day from sunrise to sunset.

View Article and Find Full Text PDF

Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing conditions and plant materials, we observed significant differences in root diameter, specific root length (SRL) and root diameter distribution between two commonly used commercial grapevine rootstocks: Richter 110 (110R; drought resistant) and Millardet et de Grasset 101-14 (101-14Mgt; drought sensitive). The 110R consistently showed greater root diameters with smaller SRL and proportion of root length comprised of fine lateral roots.

View Article and Find Full Text PDF

Structural changes during severe drought stress greatly modify the hydraulic properties of fine roots. Yet, the physiological basis behind the restoration of fine root water uptake capacity during water recovery remains unknown. Using neutron radiography (NR), X-ray micro-computed tomography (micro-CT), fluorescence microscopy, and fine root hydraulic conductivity measurements (Lp ), we examined how drought-induced changes in anatomy and hydraulic properties of contrasting grapevine rootstocks are coupled with fine root growth dynamics during drought and return of soil moisture.

View Article and Find Full Text PDF

Clonal rootstocks are one alternative used by the walnut industry to control damage caused by species, traditionally using plants grafted on susceptible rootstock. Vlach, VX211, and RX1 are clonal rootstocks with a degree of resistance to species. The resistance to pathogens in these rootstocks depends on the resistance mechanisms activated by the presence of the pathogen and subsequent development of responses in the host.

View Article and Find Full Text PDF

A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J.

View Article and Find Full Text PDF

Water acquisition is thought to be limited to the unsuberized surface located close to root tips. However, there are recurring periods when the unsuberized surfaces are limited in woody root systems, and radial water uptake across the bark of woody roots might play an important physiological role in hydraulic functioning. Using X-ray microcomputed tomography (microCT) and hydraulic conductivity measurements (Lp ), we examined water uptake capacity of suberized woody roots in vivo and in excised samples.

View Article and Find Full Text PDF

Water storage is thought to play an integral role in the maintenance of whole-plant water balance. The contribution of both living and dead cells to water storage can be derived from rehydration and water-release curves on excised plant material, but the underlying tissue-specific emptying/refilling dynamics remain unclear. Here, we used x-ray computed microtomography to characterize the refilling of xylem fibers, pith cells, and vessels under both excised and in vivo conditions in In excised stems supplied with water, water uptake exhibited a biphasic response curve, and x-ray computed microtomography images showed that high water storage capacitance was associated with fiber and pith refilling as driven by capillary forces: fibers refilled more rapidly than pith cells, while vessel refilling was minimal.

View Article and Find Full Text PDF

Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive.

View Article and Find Full Text PDF

Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision.

View Article and Find Full Text PDF