Publications by authors named "Itai Yanai"

The traditional view of cancer emphasizes a genes-first process. Novel cancer traits arise by genetic mutations that spread to drive phenotypic change. However, recent data support a phenotypes-first process in which nonheritable cellular variability creates novel traits that later become heritably stabilized by genetic and epigenetic changes.

View Article and Find Full Text PDF

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance. In addition to genetic mutations, recent research has identified a role for non-genetic plasticity in transient drug tolerance and the acquisition of stable resistance. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework.

View Article and Find Full Text PDF

Microsporidia are single-celled intracellular parasites that cause opportunistic diseases in humans. is a prevalent human-infecting species that invades the small intestine. Dissemination to other organ systems is also observed, and is potentially facilitated by macrophages.

View Article and Find Full Text PDF

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations.

View Article and Find Full Text PDF

The quorum-sensing system links metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of HO, a crucial host defense against . We now report that protection by surprisingly extends beyond post-exponential growth to the exit from stationary phase when the system is no longer turned on. Thus, can be considered a constitutive protective factor.

View Article and Find Full Text PDF

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes', with a proposed role in contributing to human bipedalism. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution.

View Article and Find Full Text PDF
Article Synopsis
  • KRAS inhibitors like adagrasib and sotorasib can help treat lung cancers with KRAS mutations, but many patients still develop resistance over time.
  • In patients with a specific type of lung cancer (adenocarcinoma) that also has STK11/LKB1 mutations, certain gene patterns can predict a poorer response to treatment.
  • Research shows that these cancers can change their type to avoid being affected by the drugs, and scientists found specific markers that indicate how likely someone is to respond to KRAS treatment.
View Article and Find Full Text PDF

Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In , classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling.

View Article and Find Full Text PDF

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells.

View Article and Find Full Text PDF

Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma where desmosomes are mutated in >70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes associates with a strong reduction in desmosome gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • The quorum-sensing system enhances bacterial survival against the host's reactive oxygen species (ROS) by providing a protective factor that persists beyond typical metabolic stages when this system is usually active.
  • Deletion of a specific gene led to increased respiration and fermentation in bacteria, but surprisingly resulted in lower ATP levels and growth due to a hyperactive metabolic state, making these mutant cells more vulnerable to oxidative damage.
  • The study shows that the protective effects of quorum sensing not only help bacteria resist immune attacks but also influence the spread of infection in mice, indicating that this mechanism is likely a common defense strategy for various bacterial species.
View Article and Find Full Text PDF

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.

View Article and Find Full Text PDF

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome. These modes interact with a changing cellular environment to yield highly dynamic expression patterns. In bacteria, the relationship between a gene's regulatory architecture and its expression is well understood for individual model gene circuits.

View Article and Find Full Text PDF

Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin β-hemolysin/cytolysin (β-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of β-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through β-h/c, allowing worse outcomes.

View Article and Find Full Text PDF

Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic response, and host or pathogen heterogeneity in this early interaction can impact the course of infection. To gain insight into host response heterogeneity, we investigate macrophage inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. Transcriptomic analysis reveals discrete cellular states within responding macrophages, one of which consists of four sub-states, reflecting inflammatory activation.

View Article and Find Full Text PDF

Spatial transcriptomics, with other spatial technologies, has enabled scientists to dissect the organization and interaction of different cell types within the tumor microenvironment. We asked experts to discuss some aspects of this technology from revealing the tumor microenvironment and heterogeneity, to tracking tumor evolution, to guiding tumor therapy, to current technical challenges.

View Article and Find Full Text PDF

Transcriptional heterogeneity among malignant cells of a tumor has been studied in individual cancer types and shown to be organized into cancer cell states; however, it remains unclear to what extent these states span tumor types, constituting general features of cancer. Here, we perform a pan-cancer single-cell RNA-sequencing analysis across 15 cancer types and identify a catalog of gene modules whose expression defines recurrent cancer cell states including 'stress', 'interferon response', 'epithelial-mesenchymal transition', 'metal response', 'basal' and 'ciliated'. Spatial transcriptomic analysis linked the interferon response in cancer cells to T cells and macrophages in the tumor microenvironment.

View Article and Find Full Text PDF