Publications by authors named "Itai Sharon"

Article Synopsis
  • Metabolic interactions between bacteria in the rhizosphere impact plant-related functions and understanding these interactions can enhance microbial community functionality.
  • A new framework using genomics and modeling has been developed to study these interactions, focusing on bacteria in apple rhizospheres linked to disease outcomes.
  • This research enables the identification of specific microbial species and compounds that could either suppress or support diseases, providing insights for targeted manipulation of microbiomes across various environments.
View Article and Find Full Text PDF

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear.

View Article and Find Full Text PDF

Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis.

View Article and Find Full Text PDF

Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or β-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes.

View Article and Find Full Text PDF

Cyanophycin is a natural polymer composed of a poly-aspartate backbone with arginine attached to each of the aspartate sidechains. Produced by a wide range of bacteria, which mainly use it as a store of fixed nitrogen, it has many promising industrial applications. Cyanophycin can be synthesized from the amino acids Asp and Arg by the widespread cyanophycin synthetase 1 (CphA1), or from the dipeptide β-Asp-Arg by the cyanobacterial enzyme cyanophycin synthetase 2 (CphA2).

View Article and Find Full Text PDF

Cyanophycin is a bacterial biopolymer used for storage of fixed nitrogen. It is composed of a backbone of L-aspartate residues with L-arginines attached to each of their side chains. Cyanophycin is produced by cyanophycin synthetase 1 (CphA1) using Arg, Asp and ATP, and is degraded in two steps.

View Article and Find Full Text PDF

Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into β-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity.

View Article and Find Full Text PDF

Polyploidy, the phenomenon of having more than one copy of the genome in an organism, is common among haloarchaea. While providing short-term benefits for DNA repair, polyploidy is generally regarded as an "evolutionary trap" that by the notion of the Muller's ratchet will inevitably conclude in the species' decline or even extinction due to a gradual reduction in fitness. In most reported cases of polyploidy in archaea, the genetic state of the organism is considered as homoploidy i.

View Article and Find Full Text PDF

Background: Cyanophycinases are serine protease family enzymes which are required for the metabolism of cyanophycin, the natural polymer multi-L-arginyl-poly(L-aspartic acid). Cyanophycinases degrade cyanophycin to β-Asp-Arg dipeptides, which enables use of this important store of fixed nitrogen.

Methods: We used genetic code expansion to incorporate diaminopropionic acid into cyanophycinase in place of the active site serine, and determined a high-resolution structure of the covalent acyl-enzyme intermediate resulting from attack of cyanophycinase on a short cyanophycin segment.

View Article and Find Full Text PDF

The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels.

View Article and Find Full Text PDF
Article Synopsis
  • Cyanophycin is a valuable nitrogen reserve biopolymer synthesized by the enzyme cyanophycin synthetase 1 (CphA1), which has various industrial applications.
  • CphA1 typically requires existing cyanophycin segments as primers for polymerization, but this study reveals that most CphA1s can function without them due to a unique ability to produce small amounts of cyanophycin independently.
  • The research also uncovers a cryptic metallopeptidase-like site in CphA1 that aids in generating primers from these small quantities, leading to more efficient cyanophycin production in organisms where it’s introduced.
View Article and Find Full Text PDF

Studies indicate that the intestinal microbiota influences general metabolic processes in humans, thereby modulating the risk of chronic diseases such as type 2 diabetes, allergy, cardiovascular disease, and colorectal cancer (CRC). Dietary factors are also directly related to chronic disease risk, and they affect the composition and function of the gut microbiota. Still, detailed knowledge on the relation between diet, the microbiota, and chronic disease risk is limited.

View Article and Find Full Text PDF

Cyanophycin is a biopolymer composed of long chains of β-Asp-Arg. It is widespread in nature, being synthesized by many clades of bacteria, which use it as a cellular reservoir of nitrogen, carbon, and energy. Two enzymes are known to produce cyanophycin: cyanophycin synthetase 1 (CphA1), which builds cyanophycin from the amino acids Asp and Arg by alternating between two separate reactions for backbone extension and side chain modification, and cyanophycin synthetase 2 (CphA2), which polymerizes β-Asp-Arg dipeptides.

View Article and Find Full Text PDF

Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase.

View Article and Find Full Text PDF

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CL (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CL non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CL.

View Article and Find Full Text PDF

The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as -acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density.

View Article and Find Full Text PDF

We observed high rates of bloodstream infections (BSIs) following fecal microbiota transplantation (FMT) for graft-versus-host-disease (33 events in 22 patients). To trace the BSIs' origin, we applied a metagenomic bioinformatic pipeline screening donor and recipient stool samples for bacteremia-causing strains in 13 cases. Offending strains were not detected in FMT donations.

View Article and Find Full Text PDF

In human cells under stress conditions, misfolded polypeptides can form potentially cytotoxic insoluble aggregates. To eliminate aggregates, the HSP70 chaperone machinery extracts and resolubilizes polypeptides for triage to refolding or degradation. Yeast and bacterial chaperones of the small heat-shock protein (sHSP) family can bind substrates at early stages of misfolding, during the aggregation process.

View Article and Find Full Text PDF

Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the β-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available.

View Article and Find Full Text PDF

Exposure to antibiotics in the first days of life is thought to affect various physiological aspects of neonatal development. Here, we investigate the long-term impact of antibiotic treatment in the neonatal period and early childhood on child growth in an unselected birth cohort of 12,422 children born at full term. We find significant attenuation of weight and height gain during the first 6 years of life after neonatal antibiotic exposure in boys, but not in girls, after adjusting for potential confounders.

View Article and Find Full Text PDF

CO is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data.

View Article and Find Full Text PDF
Article Synopsis
  • Marine cyanobacteria play a crucial role in ocean primary production and are influenced by their viruses, known as cyanophages.
  • Despite evidence suggesting some marine cyanophages can undergo lysogeny, no complete genome sequence of these temperate cyanophages had been identified until now.
  • Through the analysis of metagenomes from the Red Sea and Tara Oceans, researchers discovered a new lineage of uncultured marine cyanophages, which include unique genes related to phycobilisome degradation, integrases, and DNA polymerases, indicating their potential for lysogeny and widespread distribution in marine environments.
View Article and Find Full Text PDF

The original version of this Article contained errors in Fig. 4. In panel a, the labels 'F420-reducing NiFe hydrogenase (group 3a)' and 'Group 2 NiFe hydrogenase' were misplaced.

View Article and Find Full Text PDF

The evolution of aerobic respiration was likely linked to the origins of oxygenic Cyanobacteria. Close phylogenetic neighbors to Cyanobacteria, such as Margulisbacteria (RBX-1 and ZB3), Saganbacteria (WOR-1), Melainabacteria and Sericytochromatia, may constrain the metabolic platform in which aerobic respiration arose. Here, we analyze genomic sequences and predict that sediment-associated Margulisbacteria have a fermentation-based metabolism featuring a variety of hydrogenases, a streamlined nitrogenase, and electron bifurcating complexes involved in cycling of reducing equivalents.

View Article and Find Full Text PDF

Ubiquitylation is an eukaryotic signal that regulates most cellular pathways. However, four major hurdles pose challenges to study ubiquitylation: (1) high redundancy between ubiquitin (Ub) cascades, (2) ubiquitylation is tightly regulated in the cell, (3) the transient nature of the Ub signal, and (4) difficulties to purify functional ubiquitylation apparatus for in vitro assay. Here, we present systems that express functional Ub cascades in E.

View Article and Find Full Text PDF