Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes.
View Article and Find Full Text PDFArthropod symbionts present tissue tropism that corresponds to the nature of the association and the mode of transmission between host generations. In ticks, however, our knowledge of symbiont tissue tropism and function is limited. Here, we quantified and localized previously described Coxiella-like symbionts in several organs of the tick Rhipicephalus turanicus.
View Article and Find Full Text PDFA 16S rRNA gene approach, including 454 pyrosequencing and quantitative PCR (qPCR), was used to describe the bacterial community in Rhipicephalus turanicus and to evaluate the dynamics of key bacterial tenants of adult ticks during the active questing season. The bacterial community structure of Rh. turanicus was characterized by high dominance of Coxiella and Rickettsia and extremely low taxonomic diversity.
View Article and Find Full Text PDF