Publications by authors named "Itaf Ben Slimen"

Epileptic seizures are known for their unpredictable nature. However, recent research provides that the transition to seizure event is not random but the result of evidence accumulations. Therefore, a reliable method capable to detect these indications can predict seizures and improve the life quality of epileptic patients.

View Article and Find Full Text PDF

The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography (EEG) is an oversensitive operation and prone to errors, which has motivated the researchers to develop effective automated seizure detection methods. This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases. The proposed method consists of three steps: (i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis (MSPCA), (ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition (EMD), discrete wavelet transform (DWT), and dual-tree complex wavelet transform (DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals, and (iii) allocate the feature vector to the relevant class ( , seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine (SVM), -nearest neighbor ( -NN), and linear discriminant analysis (LDA).

View Article and Find Full Text PDF