Publications by authors named "Isvita Marfatia"

Background: Identifying ground glass opacities (GGOs) is challenging during robot-assisted thoracic surgery (RATS). Intraoperative molecular imaging (IMI) using tumor-targeted fluorescent tracers may address this clinical problem, but has never been evaluated in RATS. In a pilot study, we sought to determine whether IMI during RATS (RIMI) can localize GGOs.

View Article and Find Full Text PDF

Background: Intraoperative molecular imaging (IMI) with folate-targeted NIR tracers has been shown to improve lesion localization in more than 80% of lung adenocarcinomas. However, mucinous adenocarcinomas (MAs) and invasive mucinous adenocarcinomas (IMAs) of the lung, which are variants of adenocarcinoma, appear to have decreased fluorescence despite appropriate folate receptor expression on the tumor surface. We hypothesized that the etiology may be related to light excitation and emission through non-Newtonian fluid (mucin) produced by goblet and columnar cancer cells.

View Article and Find Full Text PDF

Background: Intraoperative molecular imaging (IMI) using tumor-targeted optical contrast agents can improve cancer resections. The optimal wavelength of the IMI tracer fluorophore has never been studied in humans and has major implications for the field. To address this question, we investigated 2 spectroscopically distinct fluorophores conjugated to the same targeting ligand.

View Article and Find Full Text PDF

Pulmonary squamous cell carcinoma is the second most common lung cancer subtype and has a low 5-year survival rate at 17.6%. Complete resection with negative margins can be curative, but a high number of patients suffer early postoperative recurrence due to inadequate disease clearance at the index operation.

View Article and Find Full Text PDF

Background: Pulmonary ground glass opacities (GGOs) are early-stage adenocarcinoma spectrum lesions that are not easily palpable. Challenges in localizing GGOs during intraoperative pathology can lead to imprecise diagnoses and additional time under anesthesia. To improve localization of GGOs during frozen section diagnosis, we evaluated a novel technique, 3-dimensional near-infrared specimen mapping (3D-NSM).

View Article and Find Full Text PDF

Importance: Complete (R0) resection is the dominant prognostic factor for survival across solid tumor types. Achieving adequate tumor clearance with appropriate margins is particularly difficult in nonpalpable tumors or in situ disease. Previous methods to address this problem have proven time consumptive, impractical, or ineffective.

View Article and Find Full Text PDF