Publications by authors named "Istvan Veres"

A method for the determination of longitudinal and transverse bulk acoustic wave attenuation from measurements of the decay-rate of two independent zero-group-velocity resonances in a couple of matched plates is presented. A linear relation is derived, which links the bulk-wave attenuation coefficients to the decay-rate of plate-resonances. The relation is used to determine the acoustic loss of tungsten at GHz frequencies from noncontact laser-ultrasonic measurements in plates with thicknesses of about 1 µm.

View Article and Find Full Text PDF

Grain boundary scattering-induced attenuation and phase-velocity dispersion of Rayleigh-type surface acoustic waves are studied with a time-domain finite-element method (FEM). The FEM simulation incorporates a realistic material model based on matching the spatial two-point correlation function of a Laguerre tessellation with that obtained from optical micrographs of a previously studied aluminum sample. Plane surface acoustic waves are excited in a multitude of statistically equivalent virtual polycrystals, and their surface displacement fields are averaged for subsequent extraction of the coherent-wave attenuation coefficient and phase velocity.

View Article and Find Full Text PDF

The influence of a polycrystals' grain structure on elastic wave scattering is studied with analytical and numerical methods in a broad frequency range. A semi-analytical attenuation model, based on an established scattering theory, is presented. This technique accurately accounts for the grain morphology without prior assumptions on grain statistics.

View Article and Find Full Text PDF

By means of an ultrafast optical technique, we track focused gigahertz coherent phonon pulses in objects down to sub-micron in size. Infrared light pulses illuminating the surface of a single metal-coated silica fibre generate longitudinal-phonon wave packets. Reflection of visible probe light pulses from the fibre surface allows the vibrational modes of the fibre to be detected, and Brillouin optical scattering of partially transmitted light pulses allows the acoustic wavefronts inside the transparent fibre to be continuously monitored.

View Article and Find Full Text PDF

In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed. First, analytical expressions are shown for the determination of the k-ω location of the zero group velocity Lamb modes as a function of the Poisson's ratio. The analytical expressions are solved numerically and an inverse problem is formulated to determine the unknown wave velocities in plates of known thickness.

View Article and Find Full Text PDF

The excitability of zero group velocity (ZGV) Lamb waves using a pulsed laser source is investigated experimentally and through numerical simulation. Experimentally, a laser based ultrasonic technique is used to find the optical spot size on the sample surface that allows an optimal coupling of the optical energy into the ZGV mode. Numerical simulations, using the time domain finite differences technique, are carried out to model the thermoelastic generation process by laser irradiation and the propagation of the generated acoustic waves.

View Article and Find Full Text PDF

In this study, modeling approaches for porosity in layered media are presented and compared. First, an effective-medium model is used to account for the frequency-dependent attenuation of the elastic waves. The effective-medium model is based on a single-scattering approach, i.

View Article and Find Full Text PDF

In this study a theoretical framework for calculating the acoustic response of optical fiber-based ultrasound sensors is presented. The acoustic response is evaluated for optical fibers with several layers of coating assuming a harmonic point source with arbitrary position and frequency. First, the fiber is acoustically modeled by a layered cylinder on which spherical waves are impinged.

View Article and Find Full Text PDF

This article elaborates on the crossing points of the frequency-wavenumber branches for the symmetric and anti-symmetric Lamb modes in a homogeneous plate. It is shown both theoretically as well as experimentally that at these crossing points either the normal or the longitudinal components of modal displacement attain an extreme value, i.e.

View Article and Find Full Text PDF

Laser-generation of ultrasound is investigated in the coupled dynamical thermoelasticity in the presented paper. The coupled heat conduction and wave equations are solved using finite differences. It is shown that the application of staggered grids in combination with explicit integration of the wave equation facilitates the decoupling of the solution and enables the application of a combination of implicit and explicit numerical integration techniques.

View Article and Find Full Text PDF

The current work presents a correlation-based detection technique with application in modulated laser-ultrasonics. In standard use of coded sequences the impulse response of a system is recovered in the time domain with improved signal to noise ratio (SNR). The presented method is an extension of this technique, where the response to a chirped waveform is restored with improved SNR; hence, the response is in a well-defined frequency range.

View Article and Find Full Text PDF

The frequency response of fiber optic line detectors is investigated in the presented paper. An analytical model based on oblique scattering of elastic waves is used to calculate the frequency dependent acousto-optical transfer functions of bare glass optical and polymer optical fibers. From the transfer functions the transient response of fibers detectors to photoacoustically excited spherical sources is derived.

View Article and Find Full Text PDF

The stability of the finite-difference approximation of elastic wave propagation in orthotropic homogeneous media in the three-dimensional case is discussed. The model applies second- and fourth-order finite-difference approaches with staggered grid and stress-free boundary conditions in the space domain and second-order finite-difference approach in the time domain. The numerical integration of the wave equation by central differences is conditionally stable and the corresponding stability criterion for the time domain discretisation has been deduced as a function of the material properties and the geometrical discretization.

View Article and Find Full Text PDF

In this paper we will present a method to determine the material properties of a wooden bar with rectangular cross-section using guided waves in the measurement. We modelled the wood as an orthotropic material with nine independent constants. We determined the dispersion curves theoretically in the three-dimensional case using a semi-analytical finite element method.

View Article and Find Full Text PDF