Publications by authors named "Istvan Tolnai"

The performance of functional nanocatalysts can be extended by integrating multiple types of metals into well-designed nanoparticles. A porous multimetallic shell grown around high-quality monometallic seeds significantly enhances the availability of active sites. Here, tetrametallic core/shell nanoparticles (Au@mPdPtIr) featuring micro- and mesoporous shells are synthesized with strict control over the overall particle morphology.

View Article and Find Full Text PDF

Integrating more than one type of metal into a nanoparticle that has a well-defined morphology and composition expands the functionalities of nanocatalysts. For a metal core/porous multimetallic shell nanoparticle, the availability of catalytically active surface sites and molecular mass transport can be enhanced, and the multielemental synergy can facilitate intraparticle charge transport. In this work, a reliable and robust synthesis of such a functional tetrametallic nanoparticle type is presented, where a micro- and mesoporous PdPtIr shell is grown on Au nanorods.

View Article and Find Full Text PDF

Deep geological repository is widely considered as the preferred solution for the final disposal of high-level radioactive waste. Investigation representative of the Hungarian disposal concept was conducted using mock-up diffusion cells to study the chemical changes of S235JR carbon steel canister and CEM II/B concrete of the Public Limited Company for Radioactive Waste Management under anerobic and water saturated conditions at 80 °C. Micro-Raman, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, fluid and potentiometric analysis were performed over a period of 12 months.

View Article and Find Full Text PDF

There is still a safety challenge for the long-term stabilization of nuclear waste. Due to its affordable price and easy manufacturing, cement is one of the most promising materials to immobilize a large volume of low- and intermediate-level radioactive liquid waste. To investigate the effect of borate on the cementation of radioactive evaporator concentrates and to provide more data for solidification formula optimization, simulated liquid waste in various concentrations was prepared.

View Article and Find Full Text PDF