Publications by authors named "Istvan Molnar-Szakacs"

Inspired by the pioneering work of Eran Zaidel beginning in the early 1970's on the role of the two cerebral hemispheres of the human brain in self-related cognition, we review research on self-face recognition from a laterality perspective. The self-face is an important proxy of the self, and self-face recognition has been used as an indicator of self-awareness more broadly. Over the last half century, behavioral and neurological data, along with over two decades of neuroimaging research evidence have accumulated on this topic, generally concluding a right-hemisphere dominance for self-face recognition.

View Article and Find Full Text PDF

Introduction: Research on the health of older Veterans in Canada is an emerging area. Few population-based studies in Canada have included older Veterans as a specific group of interest. This paper describes a cohort of self-identified Veterans within the Canadian Longitudinal Study on Aging (CLSA).

View Article and Find Full Text PDF

Executive control is a complex high-level cognitive function that relies on distributed brain circuitry. We propose that the anterior insular cortex plays an under-appreciated role in executive processes, acting as a gatekeeper to other brain regions and networks by virtue of primacy of action and effective connectivity. The flexible functional profile of the anterior insular subdivision renders it a key hub within the broader midcingulo-insular 'salience network', allowing it to orchestrate and drive activity of other major functional brain networks including the medial frontoparietal 'default mode network' and lateral frontoparietal 'central executive network'.

View Article and Find Full Text PDF

Worldwide use of face masks as personal protective equipment (PPE) during the COVID-19 pandemic has changed interpersonal interactions in myriad ways, likely permanently. Creative strategies like the PPE Portrait Project serve to mitigate social disconnection resulting from facial feature obstruction.

View Article and Find Full Text PDF

Autism spectrum disorder is a complex, heterogeneous neurodevelopmental condition of largely unknown etiology. This heterogeneity of symptom presentation, combined with high rates of comorbidity with other developmental disorders and a lack of reliable biomarkers, makes diagnosing and evaluating life outcomes for individuals with autism spectrum disorder a challenge. We review the growing literature on neuroimaging-based biomarkers of risk for the development of autism and explore evidence for resilience in some autistic individuals.

View Article and Find Full Text PDF

The insular cortex, hidden within the lateral sulcus of the human brain, participates in a range of cognitive, affective, and sensory functions. Autism spectrum disorder (ASD), a neurodevelopmental condition affecting all of these functional domains, has increasingly been linked with atypical activation and connectivity of the insular cortices. Here we review the latest research linking atypical insular function to a range of behaviors characteristic of ASD, with an emphasis on neuroimaging findings in the domains of social cognition and executive function.

View Article and Find Full Text PDF

Recent evidence for the fractionation of the default mode network (DMN) into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN - medial prefrontal cortex and posterior cingulate cortex - as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network.

View Article and Find Full Text PDF

Understanding emotions is fundamental to our ability to navigate the complex world of human social interaction. Individuals with autism spectrum disorders (ASD) experience difficulties with the communication and understanding of emotions within the social domain. Their ability to interpret other people's nonverbal, facial, and bodily expressions of emotion is strongly curtailed.

View Article and Find Full Text PDF

A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space.

View Article and Find Full Text PDF

Recent inquiries into the nature of self-representation have put forward a new and interesting conceptualization of the self, as a "center of gravity" of one's private and social behavior. We review recent neuroimaging work that has suggested interactions among brain regions comprising the default state network, including medial and temporo-parietal cortical regions and the mirror neuron system including lateral fronto-parietal regions as two interacting neural systems that work in concert to produce a cohesive self-representation through simulation. Simulation processes-broadly construed here as using existing representations as templates for understanding novel information-are instantiated by these brain systems across a wide range of domains including time, space, physical and social, giving rise to the multifaceted Self that we all are.

View Article and Find Full Text PDF

Understanding emotions is fundamental to our ability to navigate and thrive in a complex world of human social interaction. Individuals with Autism Spectrum Disorders (ASD) are known to experience difficulties with the communication and understanding of emotion, such as the nonverbal expression of emotion and the interpretation of emotions of others from facial expressions and body language. These deficits often lead to loneliness and isolation from peers, and social withdrawal from the environment in general.

View Article and Find Full Text PDF

The ability to create and enjoy music is a universal human trait and plays an important role in the daily life of most cultures. Music has a unique ability to trigger memories, awaken emotions and to intensify our social experiences. We do not need to be trained in music performance or appreciation to be able to reap its benefits-already as infants, we relate to it spontaneously and effortlessly.

View Article and Find Full Text PDF

In a recent experiment with functional magnetic-resonance imaging, we found that brain activity in the extrastriate body area (EBA) distinguished between observed self- and other-generated movements, being significantly higher during observation of someone else's movement. Here, we investigated further the role of EBA in self-other distinctions using low-frequency repetitive transcranial magnetic stimulation (rTMS). As compared with rTMS applied over a control site, rTMS applied over the EBA increased reaction times, without affecting accuracy, for the detection of other-generated movements.

View Article and Find Full Text PDF

Conscious awareness of the self as continuous through time is attributed to the human ability to remember the past and to predict the future, a cogitation that has been called "mental time travel" (MTT). MTT allows one to re-experience one's own past by subjectively "locating" the self to a previously experienced place and time, or to pre-experience an event by locating the self into the future. Here, we used a novel behavioral paradigm in combination with evoked potential mapping and electrical neuroimaging, revealing that MTT is composed of two different cognitive processes: absolute MTT, which is the location of the self to different points in time (past, present, or future), and relative MTT, which is the location of one's self with respect to the experienced event (relative past and relative future).

View Article and Find Full Text PDF

People all over the world use their hands to communicate expressively. Autonomous gestures, also known as emblems, are highly social in nature, and convey conventionalized meaning without accompanying speech. To study the neural bases of cross-cultural social communication, we used single pulse transcranial magnetic stimulation (TMS) to measure corticospinal excitability (CSE) during observation of culture-specific emblems.

View Article and Find Full Text PDF

The role of superior temporal cortex in speech comprehension is well established, but the complete network of regions involved in understanding language in ecologically valid contexts is less clearly understood. In a functional magnetic resonance imaging (fMRI) study, we presented 24 subjects with auditory or audiovisual narratives, and used model-free intersubject correlational analyses to reveal brain areas that were modulated in a consistent way across subjects during the narratives. Conventional comparisons to a resting state were also performed.

View Article and Find Full Text PDF

Self-other discrimination is fundamental to social interaction, however, little is known about the neural systems underlying this ability. In a previous functional magnetic resonance imaging study, we demonstrated that a right fronto-parietal network is activated during viewing of self-faces as compared with the faces of familiar others. Here we used image-guided repetitive transcranial magnetic stimulation (rTMS) to create a 'virtual lesion' over the parietal component of this network to test whether this region is necessary for discriminating self-faces from other familiar faces.

View Article and Find Full Text PDF

A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions.

View Article and Find Full Text PDF

The emergent picture from the literature on the processing of self-related information suggests that in addition to the neural mechanisms involved in recognizing one's own face, there may also be neural representations of the self that are modality independent and favour the right hemisphere. We used focal, single-pulse transcranial magnetic stimulation in human subjects to assess cortical excitability during covert reading of self-descriptive personality-trait words. We hypothesized that the right hemisphere would show a greater overall facilitation to personality-trait words than the left hemisphere.

View Article and Find Full Text PDF

Self-recognition has been demonstrated by a select number of primate species and is often used as an index of self-awareness. Whether a specialized neural mechanism for self-face recognition in humans exists remains unclear. We used event-related fMRI to investigate brain regions selectively activated by images of one's own face.

View Article and Find Full Text PDF

Understanding the intentions of others while watching their actions is a fundamental building block of social behavior. The neural and functional mechanisms underlying this ability are still poorly understood. To investigate these mechanisms we used functional magnetic resonance imaging.

View Article and Find Full Text PDF

Functional brain imaging studies have demonstrated increased activity in dorsal premotor and posterior parietal cortex when performing spatial stimulus-response compatibility tasks (SRC). We tested the specific role of these regions in stimulus-response mapping using single-pulse transcranial magnetic stimulation (TMS). Subjects were scanned using functional magnetic resonance imaging (fMRI) prior to the TMS session during performance of a task in which spatial compatibility was manipulated.

View Article and Find Full Text PDF

Recent neuroimaging studies have suggested that the inferior frontal gyrus (IFG) is important for action observation and imitation. In order to further explore the role of IFG in action observation and imitation, we pooled data from seven functional magnetic resonance imaging studies involving observation and imitation of simple finger movements performed in our laboratory. For imitation we found two peaks of activation in the pars opercularis, one in its dorsal sector and the other in its ventral sector.

View Article and Find Full Text PDF

Some human brain areas are tonically active in a resting state when subjects are not engaged in any overt task. The activity of these areas decreases when subjects are engaged in a wide variety of laboratory tasks designed to study cognitive operations. It has been suggested that these areas, among them the medial parietal (precyneus) and the dorsomedial prefrontal cortices, may support a "default state" of the human brain.

View Article and Find Full Text PDF