A novel indolizine class of compounds was identified as TRPV1 antagonist from an HTS campaign. However, this indolizine class proved to be unstable and reacted readily with glutathione when exposed to light and oxygen. Reactivity was reduced by the introduction of a nitrogen atom alpha to the indolizine nitrogen.
View Article and Find Full Text PDFThe Na(V)1.7 ion channel is an attractive target for development of potential analgesic drugs based on strong genetic links between mutations in the gene coding for the channel protein and inheritable pain conditions. The (S)-N-chroman-3-ylcarboxamide series, exemplified by 1, was used as a starting point for development of new channel blockers, resulting in the phenethyl nicotinamide series.
View Article and Find Full Text PDFRecently, we described a series of phenyl methyl-isoxazole derivatives as novel, potent, and selective inhibitors of the voltage-gated sodium channel type 1.7 (Bioorg Med Chem Lett 21:3871-3876, 2011). The lead compound, 2-chloro-6-fluorobenzyl [3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbamate, showed unprecedented GSH and cysteine reactivity associated with NADPH-dependent metabolism in trapping studies using human liver microsomes.
View Article and Find Full Text PDFRecent findings showing a relation between mutations in the Na(V)1.7 channel in humans and altered pain sensation has contributed to increase the attractiveness of this ion channel as target for development of potential analgesics. Amido chromanes 1 and 2 were identified as blockers of the Na(V)1.
View Article and Find Full Text PDFThe voltage-gated sodium channel Na(V)1.7 is believed to be a critical mediator of pain sensation based on clinical genetic studies and pharmacological results. Clinical utility of nonselective sodium channel blockers is limited due to serious adverse drug effects.
View Article and Find Full Text PDFBlocking of certain sodium channels is considered to be an attractive mechanism to treat chronic pain conditions. Phenyl isoxazole carbamate 1 was identified as a potent and selective Na(V)1.7 blocker.
View Article and Find Full Text PDFThe synthesis and SAR of a new series of LXR agonist is reported. The N-Aryl-3,3,3-trifluoro-2-hydroxy-2-methyl-propionamide hits were found in a limited screen of the AstraZeneca compound collection. The effort to optimize these hits into LXRbeta selectivity is described.
View Article and Find Full Text PDF