In most recent studies, long-term retention after orthodontic treatment has been hypothesized that may be necessary to maintain the stability of the dentition and avoid post-treatment changes. The bonded fixed retainer is characterized by its clinical effectiveness, patient acceptance, and lack of patient complaints as compared with a removable retainer. An electronic database (such as PubMed, PubMed Central, Web of Science, Science Direct, Cochrane Library, Scopus, and ResearchGate) has been collected using specific keywords.
View Article and Find Full Text PDFThe aim of this study was to investigate the retention forces of secondary telescopic crowns made of polyetherketoneketone (PEKK) in combination with primary crowns made of four different dental alloys and to determine whether the retention forces change in the course of up to 5000 simulated wear cycles. A total of four groups of telescopic crowns were investigated: group 1: 10 primary crowns made of a gold alloy (NEOCAST®3), group 2: 10 primary crowns made of a non-precious metal alloy (Girobond NB), group 3: 10 primary crowns made of zirconium (Cercon®base) and group 4: 10 primary crowns made from PEKK (Pekkton®ivory). The corresponding secondary crowns were made from PEKK in all the four groups.
View Article and Find Full Text PDFThe formation of the alveolar bone, which houses the dental primordia, and later the roots of tooth, may serve as a model to approach general questions of alveolar bone formation. In this respect, this study aimed to investigate the potential interactions between the alveolar bone formation and tooth eruption by using finite element (FE) methods, and to figure out whether the expanding tooth systems induce shear stresses that lead to alveolar bone formation. 3D geometric surface models were generated from the 3D histological data of the heads of mice (C57 Bl/6J) ranging from stages embryonic (E) to postnatal (P) stages E15 to P20 using the reconstruction software 3-Matic.
View Article and Find Full Text PDFDental implants are important tools for restoring the loss of teeth. The rapid growth and periodic regeneration of antlers make Sika deer a good and less invasive alternative model for studying bone remodelling in mammals. We developed a special loading device for antlers and analysed the bone reaction around unloaded implants and under immediate loading conditions until osseointegration occurred.
View Article and Find Full Text PDFThis study aimed to compare biomechanical characteristics of immediately loaded (IL) and osseointegrated (OS) dental implants inserted into Sika deer antler and lay a foundation for developing an alternative animal model for dental implants studies. Two implants per antler were inserted. One implant was loaded immediately via a self-developed loading device; the other was submerged and unloaded as control.
View Article and Find Full Text PDFClin Oral Investig
February 2019
Objectives: The aim of the present study was to find out whether the high-performance polymer PEKK is an equivalent alternative compared to cobalt chrome (CoCr)-made restorations, regarding to biocompatibility, stability, and comfort.
Materials And Methods: Twenty-two patients (m, 10; f, 12) who were indicated for a long-term temporary-fixed restoration were included. They were randomized through a lottery procedure into two groups: the first group was restored with veneered PEKK-made crowns and bridges (Pekkton ivory), while the second group was restored with veneered CoCr crowns.
Comput Methods Biomech Biomed Engin
March 2018
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out.
View Article and Find Full Text PDFPoor stability of a complete denture is a common problem due to bone atrophy of the edentulous ridge. The aim of the present study was to analyze denture stability after receiving implants and to study the biomechanical properties of denture implants and the bone bed using conventional or mini implants. Five models based on computed tomography (CT) data of edentulous patients were created.
View Article and Find Full Text PDFMini dental implants (MDI) were once thought of as transitional implants for treatment in selected clinical situations. Their reduced diameter makes them a very attractive option for patients with poor tolerance to maxillary and mandibular prostheses. Using the method of finite element analysis, a series of different designed MDI prototypes have been investigated.
View Article and Find Full Text PDFStatement Of Problem: Conventional dental implants are not applicable in the mandibular interforaminal region if bone volume is limited. Mini-dental implants offer an alternative means of supporting mandibular overdentures in a narrow residual ridge, without additional surgery.
Purpose: The purpose of this nonrandomized clinical trial was to compare the ability of mini-dental implants with that of conventional dental implants in supporting mandibular overdentures during a 2-year clinical follow-up.
The aim of the present study has been to analyze the influence of residual root number and bone density on the loading distribution of restorations combining implant and residual tooth after tooth hemisection using finite element analysis. Based on the image data of two patients, one has one distal root and the other has two distal roots in the mandibular right first molar, eight models were created (four models for each patient): a single crown was placed on the implant and residual tooth in two different bone densities; two separate crowns for the implant and residual tooth in two different bone densities. Vertical force of 100-N was applied on the crowns.
View Article and Find Full Text PDFSmall diameter (mini) dental implants have become more popular in recent years as alternatives to classical implant treatment in clinical cases with critical bony situations. However, an in-depth scientific analysis of the mechanical and biomechanical effects of small diameter implants has not yet been published. The aim of the present study was to investigate experimentally different commercial mini implants by measuring their displacements under immediate loading.
View Article and Find Full Text PDFTooth hemisection preserves partial tooth structure and reduces the resorption of alveolar bone. The aim of this study was to analyze the feasibility of preserving a molar after hemisection and inserting a dental implant with different prosthetic superstructures by means of finite element analysis. First, the distance between the root of the mandibular second premolar and the distal root of the first molar were measured in 80 cone beam computed tomography (CBCT) data sets.
View Article and Find Full Text PDFIntroduction: Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement.
Methods: A three-dimensional finite element solid model was constructed.
The bone bed around dental implants is influenced by implant and augmentation materials, as well as the insertion technique used. The primary influencing factors include the dental implant design, augmentation technique, treatment protocol, and surgical procedure. In addition to these treatment-related factors, in the literature, local and systemic factors have been found to be related to the bone stability around implants.
View Article and Find Full Text PDFThe use of short implants has increased widely within the last years. However, the stability of these implants has not yet been comprehensively investigated, in particular the difference in geometry and dimension of short implants. The aim of the present study was to investigate experimentally the difference of the secondary stability of different commercial short implants by measuring their displacements.
View Article and Find Full Text PDFThe rigidity of framework materials and overload of the implant system directly affect the final transferred load of the bone around implants. The aim of the present study has been to analyse the influence of framework materials on the transferred load to the implant system and the surrounding bone. A finite element model of a long-span cementable implant-supported fixed prosthesis was created with two coping layers (gold and hybrid composite) to optimise the fitting of the prosthesis to the abutments.
View Article and Find Full Text PDFSelf-tapping dental implants offer the advantage of shortening the surgical insertion time of the implants and improve primary stability in poor bone quality. Using finite element analysis, a series of self-tapping implants with different diameters and lengths have been analysed with respect to their load transfer to the alveolar bone under axial and 45° loading conditions with a total force of 300 N. The implants were inserted in idealised bone beds with cortical thicknesses of 2 and 3 mm.
View Article and Find Full Text PDFUnderstanding the changes in bone density after insertion of dental implants and their relation to immediate loading is essential to achieving improvements in their survival rate. Histological investigations of the bone bed in humans are limited, which in turn hampers opportunities to deepen knowledge about the remodelling process around dental implants. The aim of the present study was to follow the change in bone density by measuring the grey values of cone beam computed tomography (CBCT) at different periods subsequent to implant insertion.
View Article and Find Full Text PDFIn recent years, the application of small-diameter and mini dental implants to support removable and fixed prosthesis has dramatically increased. However, the success of these implants under functional biting forces and the reaction of the bone around them need to be analyzed. This review was aimed to present studies that deal with the fatigue life of small-diameter and mini dental implants under normal biting force, and their survival rate.
View Article and Find Full Text PDFThis paper was aimed to review the studies published about short dental implants. In the focus were the works that investigated the effect of biting forces of the rate of marginal bone resorption around short implants and their survival rates. Bone deformation defined by strain was obviously higher around short implants than the conventional ones.
View Article and Find Full Text PDFThe analysis of the non-linear and time-dependent viscoelasticity of the periodontal ligament (PDL) enables a better understanding of the biomechanical features of the key regulator tissue for tooth movement. This is of great significance in the field of orthodontics as targeted tooth movement remains still one of the main goals to accomplish. The investigation of biomechanical aspects of the PDL function, a difficult area of research, helps towards this direction.
View Article and Find Full Text PDFIn recent years, mini and short dental implants have become increasingly popular as treatment alternatives for patients in whom the bone is unsuitable for a standard implant. As yet, no detailed scientific analysis of the mechanical and biomechanical impact of the reduced diameter and length of these implants has been published. We analysed 21 commercially available implants (13 mini, eight short) with respect to material behaviour and load transfer to the alveolar bone, using finite element (FE) analysis.
View Article and Find Full Text PDFThe effect of bone remodeling on the long-time success of dental implants is becoming critical for implant design and presurgical assessments. This study applies a previously presented remodeling simulation scheme on a computer tomography (CT)-based finite element model. The CT data of a dental implant at the upper right central incisor region 6 years after implant insertion was used.
View Article and Find Full Text PDFThis study aimed to evaluate the biomechanical behaviour of adhesive endo-crowns and the influence of their design on the restoration prognosis when four loading positions are applied from the restoration-tooth junction. Two three-dimensional finite element models for the lower first molar were developed: endo-crown as a monobloc and endo-crown of a primary abutment and a full crown. Four crown loading positions were considered: 5, 6, 7 and 8 mm.
View Article and Find Full Text PDF