We presented a control strategy for tablet manufacturing processes based on continuous direct compression. The work was conducted by the experts of pharmaceutical companies, machine suppliers, academia, and regulatory authority in Japan. Among different items in the process, the component ratio and blended powder content were selected as the items requiring the control method specific to continuous manufacturing different from the conventional batch manufacturing.
View Article and Find Full Text PDFCCN3 is a matricellular protein that belongs to the CCN family. CCN3 consists of 4 domains: insulin-like growth factor-binding protein-like domain (IGFBP), von Willebrand type C-like domain (VWC), thrombospondin type 1-like domain (TSP1), and the C-terminal domain (CT) having a cysteine knot motif. Periostin is a secretory protein that binds to extracellular matrix proteins such as fibronectin and collagen.
View Article and Find Full Text PDFBackground: Matricellular proteins, including periostin, modulate cell-matrix interactions and cell functions by acting outside of cells.
Methods And Findings: In this study, however, we reported that periostin physically associates with the Notch1 precursor at its EGF repeats in the inside of cells. Moreover, by using the periodontal ligament of molar from periostin-deficient adult mice (Pn-/- molar PDL), which is a constitutively mechanically stressed tissue, we found that periostin maintained the site-1 cleaved 120-kDa transmembrane domain of Notch1 (N1) level without regulating Notch1 mRNA expression.
Periostin is a matricellular protein participating in the tissue remodelling of damaged cardiac tissue after acute myocardial infarction and of the periodontal ligament in mice. However, further studies on the periostin protein have been limited by the intrinsic difficulty of purifying this protein produced in Escherichia coli due to its insolubility. Here, we demonstrate the expression of recombinant periostin protein with high solubility and monodispersity in E.
View Article and Find Full Text PDFIn the past decades, the function of the Wnt canonical pathway during embryogenesis has been intensively investigated; however, little survey of neonatal and adult tissues has been made, and the role of this pathway remains largely unknown. To investigate its role in mature tissues, we generated two new reporter transgenic mouse lines, ins-TOPEGFP and ins-TOPGAL, that drive EGFP and beta-galactosidase expression under TCF/beta-catenin, respectively. To obtain the accurate expression pattern, we flanked these transgenes with the HS4 insulator to reduce chromosomal positional effects.
View Article and Find Full Text PDF