Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open-reading frames (smORFs). Here, we describe two peptides in encoded by conserved smORFs, Sloth1 and Sloth2.
View Article and Find Full Text PDFJ Extracell Vesicles
April 2021
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations.
View Article and Find Full Text PDFLocomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that control a wide range of functions in the cell. They act as post-transcriptional gene regulators throughout in development and in adulthood, although recent evidence suggests their potential role in the onset and development of various diseases and neuropathologies. In neurons miRNAs seem to play a key role as regulators of synaptic function.
View Article and Find Full Text PDFIn recent years, microRNAs or miRNAs have been proposed to target neuronal mRNAs localized near the synapse, exerting a pivotal role in modulating local protein synthesis, and presumably affecting adaptive mechanisms such as synaptic plasticity. In the present study we have characterized the distribution of miRNAs in five regions of the adult mammalian brain and compared the relative abundance between total fractions and purified synaptoneurosomes (SN), using three different methodologies. The results show selective enrichment or depletion of some miRNAs when comparing total versus SN fractions.
View Article and Find Full Text PDF