Publications by authors named "Israel Labastida"

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (S), elemental sulfur (S), siderite (FeCO)-like, hematite (FeO)-like with sorbed CO species, gunningite (ZnSO·HO)-like phase and smithsonite (ZnCO)-like compounds in altered surface under calcareous conditions.

View Article and Find Full Text PDF

The dispersion of mine tailings affects ecosystems due to their high content of potentially toxic elements. Environmental risk increases when the soil impacted by tailings is used for agriculture; this use may result in health impacts. This study analyzes the feasibility of remediating a calcareous soil (used for maize cultivation) polluted with lead in the semiarid zone of Zimapán, México, by using EDTA as an extractant.

View Article and Find Full Text PDF

Mining is one of the main economic activities in Mexico, and Hidalgo State is one of the main areas; however, this activity produces wastes, such as mine tailings, that are disposed in deposits and may be dispersed on the soils (e.g., agricultural soils).

View Article and Find Full Text PDF

Acid mine drainage treatments using limestones have been widely reported in the literature; however, additional studies are needed to select the most effective limestone type based on an adequate characterization and in consideration of the kinetics of the rock's reaction upon exposure to high iron concentrations. In this study, with the aim to select the most appropriate limestone to use in a passive treatment system, the regular characterization (calcium carbonate analysis, determination of specific superficial area, and porosity) was complemented with a heterogeneous kinetic analysis of limestone dissolution. The physico-chemical conditions of high acidity and a high Fe concentration were similar to those measured in leachates from the "Compañía Minera Zimapán" (CMZ) tailings impoundment located in a historical Mexican mining zone.

View Article and Find Full Text PDF

A geochemical-environmental mapping was carried for a low polluted forest in North-western Mexico (Santiago Papasquiaro mining area), as part of the North American forests accounting for environmental behavior of arsenic (As), lead (Pb), zinc (Zn) and copper (Cu) in soil and tree components (stem wood and aciculums). Spectroscopic and microscopic techniques along with standard protocols were used to determine the mineralogical phases containing these elements, and their corresponding spatial distributions in soil and forests and mobility. In soil, total As, Pb, Zn and Cu ranged from 4.

View Article and Find Full Text PDF

Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb(AsO)Cl, Pb(AsO, VO)Cl)-like, lead arseniate (Pb(AsO))-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF) is the only fluorine-bearing phase.

View Article and Find Full Text PDF

Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms.

View Article and Find Full Text PDF