In Wireless Sensor Networks (WSNs), an efficient clustering technique is critical in optimizing the energy level of networked sensors and prolonging the network lifetime. While the traditional bee colony optimization technique has been widely used as a clustering technique in WSN, it mostly suffers from energy efficiency and network performance. This study proposes a Bee Colony Optimization that synergistically combines K-mean algorithms (referred to as K-BCO) for efficient clustering in heterogeneous sensor networks.
View Article and Find Full Text PDFIntroduction: Many transformations and uncertainties, such as the fourth industrial revolution and pandemics, have propelled healthcare acceptance and deployment of health information systems (HIS). External and internal determinants aligning with the global course influence their deployments. At the epic is digitalization, which generates endless data that has permeated healthcare.
View Article and Find Full Text PDFHealth information system deployment has been driven by the transformation and digitalization currently confronting healthcare. The need and potential of these systems within healthcare have been tremendously driven by the global instability that has affected several interrelated sectors. Accordingly, many research studies have reported on the inadequacies of these systems within the healthcare arena, which have distorted their potential and offerings to revolutionize healthcare.
View Article and Find Full Text PDFThere have been several studies centred on health information systems with many insights provided to enhance health care applications globally. These studies have provided theoretical schemes for fortifying the enactment and utilisation of the Health Information System (HIS). In addition, these research studies contribute greatly to the development of HIS in alignment with major stakeholders such as health practitioners and recipients of health care.
View Article and Find Full Text PDFWaste management is one of the challenges facing countries globally, leading to the need for innovative ways to design and operationalize smart waste bins for effective waste collection and management. The inability of extant waste bins to facilitate sorting of solid waste at the point of collection and the attendant impact on waste management process is the motivation for this study. The South African University of Technology (SAUoT) is used as a case study because solid waste management is an aspect where SAUoT is exerting an impact by leveraging emerging technologies.
View Article and Find Full Text PDFThe emergence of the 2019 novel coronavirus (COVID-19) which was declared a pandemic has spread to 210 countries worldwide. It has had a significant impact on health systems and economic, educational and social facets of contemporary society. As the rate of transmission increases, various collaborative approaches among stakeholders to develop innovative means of screening, detecting and diagnosing COVID-19's cases among human beings at a commensurate rate have evolved.
View Article and Find Full Text PDF