The standard single-step genomic prediction model assumes that all SNP markers explain an equal amount of genetic variance, which, however, may not be true. This is because SNPs are located in or near different genes with different functions. Therefore, it seems logical to consider SNP marker-specific weights when predicting genomic breeding values.
View Article and Find Full Text PDFThe cultivated garden strawberry (Fragaria × ananassa) has a rich history, originating from the hybridization of two wild octoploid strawberry species in the 18th century. Two-step reconstruction of Fragaria × ananassa through controlled crossings between pre-improved selections of its parental species is a promising approach for enriching the breeding germplasm of strawberry for wider adaptability. We created a population of reconstructed strawberry by hybridizing elite selections of F.
View Article and Find Full Text PDFBackground: Mastitis is a disease that incurs significant costs in the dairy industry. A promising approach to mitigate its negative effects is to genetically improve the resistance of dairy cattle to mastitis. A meta-analysis of genome-wide association studies (GWAS) across multiple breeds for clinical mastitis (CM) and its indicator trait, somatic cell score (SCS), is a powerful method to identify functional genetic variants that impact mastitis resistance.
View Article and Find Full Text PDFMastitis, inflammation of the mammary gland, is the costliest disease in dairy cattle and a major animal welfare concern. Mastitis is usually caused by bacteria, of which staphylococci, streptococci and Escherichia coli are most frequently isolated from bovine mastitis. Bacteria activate the mammary immune system in variable ways, thereby influencing the severity of the disease.
View Article and Find Full Text PDFSaprolegnia oomycete infection causes serious economic losses and reduces fish health in aquaculture. Genomic selection based on thousands of DNA markers is a powerful tool to improve fish traits in selective breeding programs. Our goal was to develop a single nucleotide polymorphism (SNP) marker panel and to test its use in genomic selection for improved survival against Saprolegnia infection in European whitefish Coregonus lavaretus, the second most important farmed fish species in Finland.
View Article and Find Full Text PDFIntroduction: The APOE ε4 allele predisposes to high cholesterol and increases the risk for lifestyle-related diseases such as Alzheimer's disease and cardiovascular diseases (CVDs). The aim of this study was to analyse interrelationships of APOE genotypes with lipid metabolism and lifestyle factors in middle-aged Finns among whom the CVD risk factors are common.
Methods: Participants (n = 211) were analysed for APOE ε genotypes, physiological parameters, and health- and diet-related plasma markers.
Background: Nutrigenetic tests are often considered to be less serious compared to other health-related genetic tests, although they share similar ethical concerns. Nutrigenetic tests are mainly available through direct-to-consumer genetic testing (DTC GT) and increasing in popularity.
Objective: To analyze the contents of nutrigenetic DTC GT websites with respect to the adequacy of the information provided to support a well-informed decision of purchasing the tests.
Background: Cattle populations are highly amenable to the genetic mapping of male reproductive traits because longitudinal data on ejaculate quality and dense microarray-derived genotypes are available for thousands of artificial insemination bulls. Two young Nordic Red bulls delivered sperm with low progressive motility (i.e.
View Article and Find Full Text PDFLarge genomic deletions are potential candidate for loss-of-function, which could be lethal as homozygote. Analysing whole genome data of 175 cattle, we report 8,480 large deletions (199 bp-773 KB) with an overall false discovery rate of 8.8%; 82% of which are novel compared with deletions in the dbVar database.
View Article and Find Full Text PDFDomestication in the near eastern region had a major impact on the gene pool of humpless taurine cattle (Bos taurus). As a result of subsequent natural and artificial selection, hundreds of different breeds have evolved, displaying a broad range of phenotypic traits. Here, 10 Eurasian B.
View Article and Find Full Text PDFBackground: A whole-genome association study of 4631 progeny-tested Nordic Red dairy cattle bulls using imputed next-generation sequencing data revealed a major quantitative trait locus (QTL) that affects birth index (BI) on Bos taurus autosome (BTA) 23. We analyzed this QTL to identify which of the component traits of BI are affected and understand its molecular basis.
Results: A genome-wide scan of BI in Nordic Red dairy cattle detected major QTL on BTA6, 14 and 23.
Background: The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields.
View Article and Find Full Text PDFBackground: Artificial insemination is widely used in many cattle breeding programs. Semen samples of breeding bulls are collected and closely examined immediately after collection at artificial insemination centers. Only ejaculates without anomalous findings are retained for artificial insemination.
View Article and Find Full Text PDFDespite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O.
View Article and Find Full Text PDFBackground: Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies.
View Article and Find Full Text PDFIn dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation.
View Article and Find Full Text PDFBackground: Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5'-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations.
View Article and Find Full Text PDFImmotile, short-tail sperm defect (ISTS) expanded in the Finnish Yorkshire population in the end of 1990s. The causal mutation for this defect is a recent L1 insertion within the SPEF2 gene in chromosome 16. Even though all homozygous boars are eliminated from the population because of infertility, the amount of affected boars increased rapidly until marker-assisted selection against the defect was established.
View Article and Find Full Text PDFA whole-genome scan using single marker association was used to detect chromosome regions associated with seven female fertility traits in Finnish Ayrshire dairy cattle. The phenotypic data consisted of de-regressed estimated breeding values for 340 bulls which were estimated using a single trait model. Genotypes were obtained with the Illumina BovineSNP50 panel and a total of 35 630 informative, high-quality single nucleotide polymorphism (SNP) markers were used.
View Article and Find Full Text PDFBackground: Microsatellites surrounding functionally important candidate genes or quantitative trait loci have received attention as proxy measures of polymorphism level at the candidate loci themselves. In cattle, selection for economically important traits is a long-term strategy and it has been reported that microsatellites are linked to these important loci.
Methods: We have investigated the variation of seven microsatellites on BTA1 (Bos taurus autosome 1) and 16 on BTA20, using bovine populations of typical production types and horn status in northern Eurasia.
Background: Prolactin receptor (PRLR) and growth hormone receptor (GHR) belong to the large superfamily of class 1 cytokine receptors. Both of them have been identified as candidate genes affecting key quantitative traits, like growth and reproduction in livestock. We have previously studied the molecular anatomy of the cytoplasmic domain of GHR in different cattle breeds and artiodactyl species.
View Article and Find Full Text PDFQuantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red. The families had previously been shown to segregate for udder health QTL.
View Article and Find Full Text PDF