The existence of mGluR, NMDAR, AMPAR and putative KAR heteroreceptor complexes in synaptic and extrasynaptic regions of brain glutamate synapses represents a major integrative mechanism. Our aim in the current article is to analyze if the formation of the different types glutamate hetereceptor complexes involves the contribution of triplet amino acid homologies (protriplets) in a postulated receptor interface based on the triplet puzzle theory. Seven main sets (lists) of receptor pairs in databases were used containing various sets (lists) of human receptor heteromers and nonheteromers obtained from the available scientific publications including the publically available GPCR-hetnet database.
View Article and Find Full Text PDFDue to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks.
View Article and Find Full Text PDFBiochemical, histochemical and coimmunoprecipitation experiments have indicated the existence of antagonistic dopamine D2 (D2R) and neurotensin 1 (NTS1R) receptor-receptor interactions in the dorsal and ventral striatum indicating a potential role of these receptor-receptor interactions in Parkinson's disease and schizophrenia. By means of Bioluminiscence Resonance energy transfer (BRET(2)) evidence has for the first time been obtained in the current study for the existence of both D2LR/NTS1R and D2SR/NTS1R heteromers in living HEK293T cells. Through confocal laser microscopy the NTS1R(GFP2) and D2R(YFP) were also shown to be colocated in the plasma membrane of these cells.
View Article and Find Full Text PDF