Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates.
View Article and Find Full Text PDFBackground: Impairment of intracellular Ca(2+) homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca(2+) uptake is thought to be mediated by the Ca(2+) uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive.
View Article and Find Full Text PDFAims: The hyperpolarization-activated cyclic nucleotide-gated (HCN) current I(f)/I(HCN) is generally thought to be carried by Na(+) and K(+) under physiological conditions. Recently, Ca(2+) influx through HCN channels has indirectly been postulated. However, direct functional evidence of Ca(2+) permeation through I(f)/I(HCN) is still lacking.
View Article and Find Full Text PDFHyperpolarization-activated, cyclic nucleotide sensitive (HCN) channels underlie the pacemaker current I(f), which plays an essential role in spontaneous cardiac activity. HCN channel subunits (HCN1-4) are believed to be modulated by additional regulatory proteins, which still have to be identified. Using biochemistry, molecularbiology and electrophysiology methods we demonstrate a protein-protein interaction between HCN2 and the K(+) channel regulator protein 1, named KCR1.
View Article and Find Full Text PDFL-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
Overexpression of human cardiac L-type Ca(2+) channel pores (hCa(v)1.2) in mice causes heart failure. Earlier studies showed Ca(v)1.
View Article and Find Full Text PDFl-Type calcium channels are multiprotein complexes composed of pore-forming (CaV1.2) and modulatory auxiliary alpha2delta- and beta-subunits. We demonstrate expression of two different isoforms for the beta2-subunit (beta2a, beta2b) and the beta3-subunit (beta3a, beta3trunc) in human non-failing and failing ischemic myocardium.
View Article and Find Full Text PDF