Publications by authors named "Ismail F Khan"

Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates.

View Article and Find Full Text PDF

Background: Impairment of intracellular Ca(2+) homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca(2+) uptake is thought to be mediated by the Ca(2+) uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive.

View Article and Find Full Text PDF

Aims: The hyperpolarization-activated cyclic nucleotide-gated (HCN) current I(f)/I(HCN) is generally thought to be carried by Na(+) and K(+) under physiological conditions. Recently, Ca(2+) influx through HCN channels has indirectly been postulated. However, direct functional evidence of Ca(2+) permeation through I(f)/I(HCN) is still lacking.

View Article and Find Full Text PDF

Hyperpolarization-activated, cyclic nucleotide sensitive (HCN) channels underlie the pacemaker current I(f), which plays an essential role in spontaneous cardiac activity. HCN channel subunits (HCN1-4) are believed to be modulated by additional regulatory proteins, which still have to be identified. Using biochemistry, molecularbiology and electrophysiology methods we demonstrate a protein-protein interaction between HCN2 and the K(+) channel regulator protein 1, named KCR1.

View Article and Find Full Text PDF

L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation.

View Article and Find Full Text PDF

Overexpression of human cardiac L-type Ca(2+) channel pores (hCa(v)1.2) in mice causes heart failure. Earlier studies showed Ca(v)1.

View Article and Find Full Text PDF

l-Type calcium channels are multiprotein complexes composed of pore-forming (CaV1.2) and modulatory auxiliary alpha2delta- and beta-subunits. We demonstrate expression of two different isoforms for the beta2-subunit (beta2a, beta2b) and the beta3-subunit (beta3a, beta3trunc) in human non-failing and failing ischemic myocardium.

View Article and Find Full Text PDF