Background: Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Recently, we have discovered a new, human specific, tau isoform termed W-tau that originates by intron 12 retention. Our preliminary data suggests this newly discovered W-tau isoform might prevent aberrant aggregation of other tau isoforms but is significantly downregulated in tauopathies such as Alzheimer's disease.
View Article and Find Full Text PDFIntracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage.
View Article and Find Full Text PDFIdentifying ancestry-specific molecular profiles of late-onset Alzheimer's Disease (LOAD) in brain tissue is crucial to understand novel mechanisms and develop effective interventions in non-European, high-risk populations. We performed gene differential expression (DE) and consensus network-based analyses in RNA-sequencing data of postmortem brain tissue from 39 Caribbean Hispanics (CH). To identify ancestry-concordant and -discordant expression profiles, we compared our results to those from two independent non-Hispanic White (NHW) samples (n = 731).
View Article and Find Full Text PDFEpitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs.
View Article and Find Full Text PDFAlteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson's and late onset Alzheimer's disease.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative disease placing a great burden on people living with it, carers and society. Yet, the underlying patho-mechanisms remain unknown and treatments limited. To better understand the molecular changes associated with AD, genome-wide association studies (GWAS) have identified hundreds of candidate genes linked to the disease, like the receptor tyrosine kinase EphA1.
View Article and Find Full Text PDFLate-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA).
View Article and Find Full Text PDFHyperphosphorylation and the subsequent aggregation of tau protein into neurofibrillary tangles (NFTs) are well-established neuropathological hallmarks of Alzheimer's disease (AD) and associated tauopathies. To further examine the impact and progression of human tau pathology in neurodegenerative contexts, the humanized tau (htau) mouse model was originally created. Despite AD-like tau pathological features recapitulated in the htau mouse model, robustness of behavioral phenotypes has not been fully established.
View Article and Find Full Text PDFAccumulation of pathological tau in synapses has been identified as an early event in Alzheimer's disease (AD) and correlates with cognitive decline in patients with AD. Tau is a cytosolic axonal protein, but under disease conditions, tau accumulates in postsynaptic compartments and presynaptic terminals, due to missorting within neurons, transsynaptic transfer between neurons, or a failure of clearance pathways. Using subcellular fractionation of brain tissue from rTg4510 tau transgenic mice with tauopathy and human postmortem brain tissue from patients with AD, we found accumulation of seed-competent tau predominantly in postsynaptic compartments.
View Article and Find Full Text PDFObjective: Synonymous variants can lead to disease; nevertheless, the majority of sequencing studies conducted in Alzheimer disease (AD) only assessed coding variation.
Methods: To detect synonymous variants modulating AD risk, we conducted a whole-genome sequencing study on 67 Caribbean Hispanic (CH) families multiply affected by AD. Identified disease-associated variants were further assessed in an independent cohort of CHs, expression quantitative trait locus (eQTL) data, brain autopsy data, and functional experiments.
Front Aging Neurosci
November 2019
Multiple neurological, physiological, and behavioral functions are synchronized by circadian clocks into daily rhythms. Neurodegenerative diseases such as Alzheimer's disease and related tauopathies are associated with a decay of circadian rhythms, disruption of sleep patterns, and impaired cognitive function but the mechanisms underlying these alterations are still unclear. Traditional approaches in neurodegeneration research have focused on understanding how pathology impinges on circadian function.
View Article and Find Full Text PDFEssential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.
View Article and Find Full Text PDFThe release of paired helical filaments (PHFs) from neurons into the extracellular space may contribute to the propagation of tau pathology across brain regions in Alzheimer's disease (AD) and other tauopathies. The majority of available mechanistic studies exploring the pathologic role of extracellular PHFs are conducted in proliferating cell lines. Here, we compare how extracellular PHFs induce tauopathy in mitotic cells and in post-mitotic brain neurons.
View Article and Find Full Text PDFTau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy.
View Article and Find Full Text PDFWe recommend a new term, "primary age-related tauopathy" (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer's disease (AD), in the absence of amyloid (Aβ) plaques. For these "NFT+/Aβ-" brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex).
View Article and Find Full Text PDFPresenilin 1 (PSEN1) encodes the catalytic subunit of γ-secretase, and PSEN1 mutations are the most common cause of early onset familial Alzheimer's disease (FAD). In order to elucidate pathways downstream of PSEN1, we characterized neural progenitor cells (NPCs) derived from FAD mutant PSEN1 subjects. Thus, we generated induced pluripotent stem cells (iPSCs) from affected and unaffected individuals from two families carrying PSEN1 mutations.
View Article and Find Full Text PDFTangle-predominant dementia (TPD) patients exhibit cognitive decline that is clinically similar to early to moderate-stage Alzheimer disease (AD), yet autopsy reveals neurofibrillary tangles in the medial temporal lobe composed of the microtubule-associated protein tau without significant amyloid-beta (Aβ)-positive plaques. We performed a series of neuropathological, biochemical and genetic studies using autopsy brain tissue drawn from a cohort of 34 TPD, 50 AD and 56 control subjects to identify molecular and genetic signatures of this entity. Biochemical analysis demonstrates a similar tau protein isoform composition in TPD and AD, which is compatible with previous histological and ultrastructural studies.
View Article and Find Full Text PDFAbnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology.
View Article and Find Full Text PDFTauopathies are characterized by progressive neurodegeneration caused by intracellular accumulation of hyperphosphorylated tau protein aggregates in the brain. The present study was designed to test whether a grape seed polyphenolic extract (GSPE) previously shown to inhibit tau protein aggregation in vitro could benefit tau-mediated neuropathology and behavior deficits in JNPL3 transgenic mice expressing a human tau protein containing the P301L mutation. Nine-month-old JNPL3 mice were treated with GSPE delivered through their drinking water for 6 months.
View Article and Find Full Text PDFAbnormal folding of the microtubule-associated protein tau leads to aggregation of tau into paired helical filaments (PHFs) and neurofibrillary tangles, the major hallmark of Alzheimer's disease (AD). We have recently shown that grape seed polyphenol extract (GSPE) reduces tau pathology in the TMHT mouse model of tauopathy (Wang et al., 2010).
View Article and Find Full Text PDFAggregation of microtubule-associated protein tau into insoluble intracellular neurofibrillary tangles is a characteristic hallmark of Alzheimer's disease (AD) and other neurodegenerative diseases, including progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, frontotemporal dementias with Parkinsonism linked to chromosome 17, and Pick's disease. Tau is abnormally hyperphosphorylated in AD and aberrant tau phosphorylation contributes to the neuropathology of AD and other tauopathies. Anti-aggregation and anti-phosphorylation are main approaches for tau-based therapy.
View Article and Find Full Text PDFA diverse group of neurodegenerative diseases - including progressive supranuclear palsy (PSP), corticobasal degeneration and Alzheimer's disease among others, collectively referred to as tauopathies - are characterized by progressive, age-dependent intracellular formations of misfolded protein aggregates that play key roles in the initiation and progression of neuropathogenesis. Recent studies from our laboratory reveal that grape seed-derived polyphenolic extracts (GSPE) potently prevent tau fibrillization into neurotoxic aggregates and therapeutically promote the dissociation of preformed tau aggregates [J. Alzheimer's Dis.
View Article and Find Full Text PDF