Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes.
View Article and Find Full Text PDFMany replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs.
View Article and Find Full Text PDFFaithfull replication of genomic information relies on the coordinated activity of the multi-protein machinery known as the replisome. Several constituents of the replisome operate as molecular motors that couple thermal and chemical energy to a mechanical task. Over the last few decades, in vitro single-molecule manipulation techniques have been used to monitor and manipulate mechanically the activities of individual molecular motors involved in DNA replication with nanometer, millisecond, and picoNewton resolutions.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2021
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components.
View Article and Find Full Text PDF