Publications by authors named "Ismael Ortiz"

Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration.

View Article and Find Full Text PDF

Circulating immune cells are an appealing candidate to serve as carriers of therapeutic cargo via nanoparticles conjugated to their surface, for several reasons: these cells are highly migratory and can squeeze through small pores of diameter smaller than their resting size; they are easily accessible in the peripheral blood via minimally invasive IV injection of particles, or can be harvested, processed ex vivo, and reintroduced to the body; they are adept at traveling through the circulation with minimal destruction and thus have access to various tissue beds of the body; and immune cells have built-in signal transduction machinery which allows them to actively engage in chemotaxis and home to regions of the tissue containing tumors, invading microorganisms, or injuries in need of wound healing. In this study, we sought to examine and quantify the degree to which nanoscale liposomes, functionalized with E-selectin adhesion receptor, could bind to a model T cell line and remain on the surface of the cells as they migrate through collagen gels of varying density in a transwell cell migration chamber. It is demonstrated that physiological levels of fluid shear stress are necessary to achieve optimal binding of the E-selectin liposomes to the cell surface as expected, and that CD3/CD28 antibody activation of the T cells was not necessary for effective liposome binding.

View Article and Find Full Text PDF

Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition.

View Article and Find Full Text PDF

Altered tissue mechanics and metabolism have gained significant attention as drivers of tumorigenesis, and mechanoresponsive metabolism has been implicated in migration and metastasis. However, heterogeneity in cell populations makes it difficult to link changes in behavior with metabolism, as individual cell behaviors are not necessarily reflected in population-based measurements. As such, the impact of increased collagen deposition, a tumor-associated collagen signature, on metabolism remains ambiguous.

View Article and Find Full Text PDF

Approximately 70% of advanced breast cancer patients will develop bone metastases, which accounts for ∼90% of cancer-related mortality. Breast cancer circulating tumor cells (CTCs) establish metastatic tumors in the bone after a close interaction with local bone marrow cells including pericytes and osteoblasts, both related to resident mesenchymal stem/stromal cells (BM-MSCs) progenitors. recapitulation of the critical cellular players of the bone microenvironment and infiltrating CTCs could provide new insights into their cross-talk during the metastatic cascade, helping in the development of novel therapeutic strategies.

View Article and Find Full Text PDF