Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control hematopoiesis.
View Article and Find Full Text PDFThe lymph gland is the larval hematopoietic organ and is aligned along the anterior part of the cardiovascular system, composed of cardiac cells, that form the cardiac tube and its associated pericardial cells or nephrocytes. By the end of embryogenesis the lymph gland is composed of a single pair of lobes. Two additional pairs of posterior lobes develop during larval development to contribute to the mature lymph gland.
View Article and Find Full Text PDFIn adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called "niche". is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions.
View Article and Find Full Text PDFIn adult mammals, hematopoiesis, the production of blood cells from hematopoietic stem and progenitor cells (HSPCs), is tightly regulated by extrinsic signals from the microenvironment called 'niche'. Bone marrow HSPCs are heterogeneous and controlled by both endosteal and vascular niches. The Drosophila hematopoietic lymph gland is located along the cardiac tube which corresponds to the vascular system.
View Article and Find Full Text PDFOrganisms rely on inducible and constitutive immune defences to combat infection. Constitutive immunity enables a rapid response to infection but may carry a cost for uninfected individuals, leading to the prediction that it will be favoured when infection rates are high. When we exposed populations of to intense parasitism by the parasitoid wasp they evolved resistance by developing a more reactive cellular immune response.
View Article and Find Full Text PDFThe defined location of a stem cell within a niche regulates its fate, behavior, and molecular identity via a complex extrinsic regulation that is far from being fully elucidated. To explore the molecular characteristics and key components of the aortic microenvironment, where the first hematopoietic stem cells are generated during development, we performed genome-wide RNA tomography sequencing on zebrafish, chicken, mouse, and human embryos. The resulting anterior-posterior and dorsal-ventral transcriptional maps provided a powerful resource for exploring genes and regulatory pathways active in the aortic microenvironment.
View Article and Find Full Text PDFHematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism.
View Article and Find Full Text PDFSelf-renewal and differentiation of mammalian haematopoietic stem cells (HSCs) are controlled by a specialized microenvironment called 'the niche'. In the bone marrow, HSCs receive signals from both the endosteal and vascular niches. The posterior signalling centre (PSC) of the larval Drosophila haematopoietic organ, the lymph gland, regulates blood cell differentiation under normal conditions and also plays a key role in controlling haematopoiesis under immune challenge.
View Article and Find Full Text PDFBlood cell production in the Drosophila hematopoietic organ, the lymph gland, is controlled by intrinsic factors and extrinsic signals. Initial analysis of Collier/Early B Cell Factor function in the lymph gland revealed the role of the Posterior Signaling Center (PSC) in mounting a dedicated cellular immune response to wasp parasitism. Further, premature blood cell differentiation when PSC specification or signaling was impaired, led to assigning the PSC a role equivalent to the vertebrate hematopoietic niche.
View Article and Find Full Text PDFStem cells are required for both tissue renewal and repair in response to injury. The maintenance and function of stem cells is controlled by their specific cellular microenvironment called "niche". Hematopoietic stem cells (HSC) that give rise to all blood cell types have been extensively studied in mammals.
View Article and Find Full Text PDFGenetic alterations affecting the JAK-STAT signaling pathway are linked to several malignancies and hematological disorders in humans. Despite being one of the most extensively studied pathways, there remain many gaps to fill. JAK-STAT components are widely conserved during evolution.
View Article and Find Full Text PDFThe Drosophila melanogaster larval hematopoietic organ, the lymph gland, is a model to study in vivo the function of the hematopoietic niche. A small cluster of cells in the lymph gland, the posterior signaling center (PSC), maintains the balance between hematopoietic progenitors (prohemocytes) and their differentiation into specialized blood cells (hemocytes). Here, we show that Decapentaplegic/bone morphogenetic protein (Dpp/BMP) signaling activity in PSC cells controls niche size.
View Article and Find Full Text PDF