Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.
View Article and Find Full Text PDFThe Head Impulse Test, the most widely accept test to assess the vestibular function, comprises rotations of the head based on idealized orientations of the semicircular canals, instead of their individual arrangement specific for each patient. In this study, we show how computational modelling can help personalize the diagnosis of vestibular diseases. Based on a micro-computed tomography reconstruction of the human membranous labyrinth and their simulation using Computational Fluid Dynamics and Fluid-Solid Interaction techniques, we evaluated the stimulus experienced by the six cristae ampullaris under different rotational conditions mimicking the Head Impulse Test.
View Article and Find Full Text PDF