Owing to advanced thermal features and stable properties, scientists have presented many novel applications of nanomaterials in the energy sectors, heat control devices, cooling phenomenon and many biomedical applications. The suspension between nanomaterials with microorganisms is important in biotechnology and food sciences. With such motivations, the aim of current research is to examine the bioconvective thermal phenomenon due to Reiner-Philippoff nanofluid under the consideration of multiple slip effects.
View Article and Find Full Text PDFOwing to enhanced thermal characteristics of nanomaterials, multidisciplinary applications of such particles have been utilized in the industrial and engineering processes, chemical systems, solar energy, extrusion processes, nuclear systems etc. The aim of current work is to suggests the thermal performances of thixotropic nanofluid with interaction of magnetic force. The suspension of microorganisms in thixotropic nanofluid is assumed.
View Article and Find Full Text PDFOwing to recent development in the thermal sciences, scientists are focusing towards the wide applications of nanofluids in industrial systems, engineering processes, medical sciences, enhancing the transport sources, energy production etc. In various available studies on nanomaterials, the thermal significance of nanoparticles has been presented in view of constant thermal conductivity and fluid viscosity. However, exponents verify that in many industrial and engineering process, the fluid viscosity and thermal conductivity cannot be treated as a constant.
View Article and Find Full Text PDFApplications: The heat transfer remains a huge problem for industrialists and engineers because many production processes required considerable amount of heat to finish the process successfully. Although, conventional fluids have large scale industrial applications but unable to provide huge amount of heat transfer. Therefore, the study is organized to propose a new ternary heat transfer model using different physical constraints.
View Article and Find Full Text PDFThe objective of current research is to endorse the thermal aspect of Sutterby nanofluid containing the microorganisms due the stretched cylinder. The features of nonlinear thermal radiation, Darcy resistance and activation energy are also incorporated to inspect the thermal prospective. The problem is further extended with implementation of modified Fourier and Fick's theories.
View Article and Find Full Text PDFOn the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration.
View Article and Find Full Text PDFThe appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation.
View Article and Find Full Text PDFThis article elucidates the magnetohydrodynamic 3D Maxwell nanofluid flow with heat absorption/generation effects. The impact of the nonlinear thermal radiation with a chemical reaction is also an added feature of the presented model. The phenomenon of flow is supported by thermal and concentration stratified boundary conditions.
View Article and Find Full Text PDFThis paper investigated the behavior of the two-dimensional magnetohydrodynamics (MHD) nanofluid flow of water-based suspended carbon nanotubes (CNTs) with entropy generation and nonlinear thermal radiation in a Darcy-Forchheimer porous medium over a moving horizontal thin needle. The study also incorporated the effects of Hall current, magnetohydrodynamics, and viscous dissipation on dust particles. The said flow model was described using high order partial differential equations.
View Article and Find Full Text PDFThe current article aims to present a numerical analysis of MHD Williamson nanofluid flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface. The second law of thermodynamics was applied to analyze the fluid flow, heat and mass transport as well as the aspects of entropy generation using Buongiorno model. Thermophoresis and Brownian diffusion is considered which appears due to the concentration and random motion of nanoparticles in base fluid, respectively.
View Article and Find Full Text PDFBackground Bioinformatics tools are of great significance and are used in different spheres of life sciences. There are wide variety of tools available to perform primary analysis of DNA and protein but most of them are available on different platforms and many remain undetected. Accessing these tools separately to perform individual task is uneconomical and inefficient.
View Article and Find Full Text PDFOwing to the fundamental significances of peristalsis phenomenon in various biological systems like circulation of blood in vessels, lungs devices, pumping of blood in heart and movement of chyme in the gastrointestinal tract, variety of research by scientist on this topic has been presented in recently years. The peristaltic pumping plays a novel role in various industrial processes like transfer of sanitary materials, the pumping equipment design of roller pumps and many more. The present article investigates numerically the theoretical aspects of heat and mass transportation in peristaltic pattern of Carreau fluid through a curved channel.
View Article and Find Full Text PDFThe 3D MHD nonlinear radiative hybrid nanofluid flow across an irregular dimension sheet with slip effect is studied numerically. The hybrid nanofluid consists of copper oxide (CuO) and magnesium oxide (MgO) nanoparticles embedded in methanol or methyl alcohol (MA). The governing PDEs' are altered as ODEs' using similarities and numerical solutions are attained using shooting scheme.
View Article and Find Full Text PDFThe movement of the ferrous nanoparticles is random in the base fluid, and it will be homogeneous under the enforced magnetic field. This phenomenon shows a significant impact on the energy transmission process. In view of this, we inspected the stream and energy transport in magnetohydrodynamic dissipative ferro and hybrid ferrofluids by considering an uneven heat rise/fall and radiation effects.
View Article and Find Full Text PDFOver the last few years, some novel researches in the field of medical science made a tendency to have therapy without any complications or side-effects of the disease with the aid of prognosis about the behaviors of the microtubules. Regarding this issue, the stability/instability analysis of curved microtubule-associated protein in axons with attention to different size effect parameters based on an exact continuum method is presented. The real property of the living biological cells is presented as the Kelvin-Voight viscoelastic properties.
View Article and Find Full Text PDFA 3-D magnetohydrodynamic flow of hybrid nanofluid across a stretched plane of non-uniform thickness with slip effects is studied. We pondered aluminum alloys of AA7072 and AA7072 + AA7075 in methanol liquid. The aluminum alloys amalgamated in this study are uniquely manufactured materials, possessing enhanced heat transfer features.
View Article and Find Full Text PDFIn rotating cylinder-piston system, the largest losses source is frictional losses, accounting for 50% of the total frictional losses, thus it is important to optimize. Effect of incremental rotation of a cylinder liner on its wear rate was investigated. The engine speed, load and the cylinder rotating angle were the main parameter.
View Article and Find Full Text PDFIn the present research, aluminum oxide- water (AlO-HO) nanofluid free convection due to magnetic forces through a permeable cubic domain with ellipse shaped obstacle has been reported. Lattice Boltzmann approach is involved to depict the impacts of magnetic, buoyancy forces and permeability on nanoparticles migration. To predict properties of AlO- water nanofluid, Brownian motion impact has been involved.
View Article and Find Full Text PDFChemical reaction in mixed convection magnetohydrodynamic second grade nanoliquid thin film flow through a porous medium containing nanoparticles and gyrotactic microorganisms is considered with entropy generation. The stratification phenomena, heat and mass transfer simultaneously take place within system. Microorganisms are utilized to stabilize the suspended nanoparticles through bioconvection.
View Article and Find Full Text PDFPolymer flow during wire coating dragged from a bath of viscoelastic incompreesible and laminar fluid inside pressure type die is carried out numerically. In wire coating the flow depends on the velcocity of the wire, geometry of the die and viscosity of the fluid. The governing equations expressing the heat transfer and flow solved numerically by Runge-Kutta fourth order method with shooting technique.
View Article and Find Full Text PDF