Fines migration can cause various issues, such as plugging of the sand screen and damage to tubings. There are two chemical sand control methods: consolidation and agglomeration. Consolidation works by injection of a solvent into the formation to harden over time and hold the sand in place, while agglomeration works by altering chemical properties of the sand surface to attract and clump up sand.
View Article and Find Full Text PDFAlmost 60% of oil and 40% of gas reserves worldwide are contained in carbonate reservoirs where acidizing stimulation is more challenging compared to sandstone reservoirs. Utilization of emulsified acids in matrix acidizing operations has been the most effective technique for more than half a century. This is due to the colloidal system's ability to generate deep, narrow conduits toward production zones under controlled retarded reactivity with the rock surface, along with the excellent sweep efficiency and corrosion inhibition of the well equipment.
View Article and Find Full Text PDFThe use of nanomaterials as a means of recovering heavy and light oil from petroleum reservoirs has increased over the preceding twenty years. Most researchers have found that injecting a nanoparticle dispersion (nanofluids) has led to good results and increased the amount of oil that can be recovered. In this research, we aim to imitate the three-dimensional hexagonal prism in the existence of SiO2 and Al2O3 nanoparticles for better oil recovery.
View Article and Find Full Text PDFEnhanced oil recovery (EOR) has been offered as an alternative to declining crude oil production. EOR using nanotechnology is one of the most innovative trends in the petroleum industry. In order to determine the maximum oil recovery, the effect of a 3D rectangular prism shape is numerically investigated in this study.
View Article and Find Full Text PDFNanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities.
View Article and Find Full Text PDF