Organic conductors are being evaluated for potential use in waste heat recovery through lightweight and flexible thermoelectric generators manufactured using cost-effective printing processes. Assessment of the potentiality of organic materials in real devices still requires a deeper understanding of the physics behind their thermoelectric properties, which can pave the way toward further development of the field. This article reports a detailed thermoelectric study of a set of highly conducting inkjet-printed films of commercially available poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulations characterized by in-plane electrical conductivity, spanning the interval 10-500 S/cm.
View Article and Find Full Text PDFNowadays, SWCNTs are envisaged to enhance the charge separation or transport of conjugated polymer-fullerene derivatives blends. In this work we studied, by means of ultrafast transient absorption spectroscopy, three components blends in which commercially available SWCNTs are added to the standard bulk heterojunction. We explored three different configurations that give rise to diverse interfacing scenarios.
View Article and Find Full Text PDF