Publications by authors named "Isiri Perera"

Mutual interactions in co-cultures of microalgae and bacteria are well known for establishing consortia and nutrient uptake in aquatic habitats, but the phenotypic changes in terms of morphological, physiological, and biochemical attributes that drive these interactions have not been clearly understood. In this novel study, we demonstrated the phenotypic response in a co-culture involving a microalga, Tetradesmus obliquus IS2, and a bacterium, Variovorax paradoxus IS1, grown with varying concentrations of two inorganic nitrogen sources. Modified Bold's basal medium was supplemented with five ratios (%) of NO-N:NH-N (100:0, 75:25, 50:50, 25:75, and 0:100), and by maintaining N:P Redfield ratio of 16:1.

View Article and Find Full Text PDF

The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp.

View Article and Find Full Text PDF

Physiological changes that drive the microalgal-bacterial consortia are poorly understood so far. In the present novel study, we initially assessed five morphologically distinct microalgae for their ability in establishing consortia in Bold's basal medium with a bacterial strain, Variovorax paradoxus IS1, all isolated from wastewaters. Tetradesmus obliquus IS2 and Coelastrella sp.

View Article and Find Full Text PDF

Phenotypic plasticity or genetic adaptation in an organism provides phenotypic changes when exposed to the extreme environmental conditions. The resultant physiological and metabolic changes greatly enhance the organism's potential for its survival in such harsh environments. In the present novel approach, we tested the hypothesis whether acid-adapted microalgae, initially isolated from non-acidophilic environments, can survive and grow in acid-mine-drainage (AMD) samples.

View Article and Find Full Text PDF

The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential.

View Article and Find Full Text PDF

Two acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, originally isolated from non-acidophilic environment, were tested for their ability to withstand higher concentrations of an invasive heavy metal, cadmium (Cd), at an acidic pH of 3.

View Article and Find Full Text PDF

Desert ecosystem is generally considered as a lifeless habitat with extreme environmental conditions although it is colonized by extremophilic microorganisms. Cyanobacteria, microalgae, and bacteria in these habitats could tolerate harsh and rapidly fluctuating environmental conditions, intense ultraviolet radiation, and lack of water, leading to cell desiccation. They possess valuable metabolites withstanding extreme environmental conditions and make them good candidates for industrial applications.

View Article and Find Full Text PDF