Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical ( = 5) or high-thoracic ( = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance.
View Article and Find Full Text PDFTranscutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention.
View Article and Find Full Text PDFBioengineering (Basel)
December 2023
This study characterizes the effects of a postural training program on balance and muscle control strategies in a virtual reality (VR) environment. The Robotic Upright Stand Trainer (RobUST), which applies perturbative forces on the trunk and assistive forces on the pelvis, was used to deliver perturbation-based balance training (PBT) in a sample of 10 healthy participants. The VR task consisted of catching, aiming, and throwing a ball at a target.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2023
The boundary-based assist-as-needed (BAAN) force field is widely used in robotic rehabilitation and has shown promising results in improving trunk control and postural stability. However, the fundamental understanding of how the BAAN force field affects the neuromuscular control remains unclear. In this study, we investigate how the BAAN force field impacts muscle synergy in the lower limbs during standing posture training.
View Article and Find Full Text PDFContext/objective: Assessed feasibility and potential effectiveness of using a novel robotic upright stand trainer (RobUST) to deliver postural perturbations or provide assistance-as-needed at the trunk while individuals with spinal cord injury (SCI) performed stable standing and self-initiated trunk movements. These tasks were assessed with research participants' hands on handlebars for self-balance assistance (hands on) and with hands off (free hands).
Design: Proof of concept study.
IEEE Trans Neural Syst Rehabil Eng
August 2021
In people with severe neuromotor deficits of trunk and lower extremities, regaining balance in standing is often performed in rehabilitation with manual assistance, rigid body supports or by the use of handrails. To investigate and further expand postural control training in standing, we developed a Robotic Upright Stand Trainer (RobUST). In this study, we used RobUST to deliver trunk perturbations while simultaneously providing postural assistive forces on the pelvis in 10 able-bodied adults.
View Article and Find Full Text PDFBackground And Purpose: Gait asymmetries are common after stroke, and often persist despite conventional rehabilitation. Robots provide training at a greater practice frequency than conventional approaches. However, prior studies of have found the transfer of learned skills outside of the device to be inadequate.
View Article and Find Full Text PDFIntroduction: Primary deficits in individuals with cerebellar degeneration include ataxia, unstable gait, and incoordination. Balance training is routinely recommended to improve function whereas little is known regarding aerobic training.
Objective: To determine the feasibility of conducting a randomized trial comparing balance and aerobic training in individuals with cerebellar degeneration.
IEEE Trans Neural Syst Rehabil Eng
September 2019
Functional rehabilitation of patients with spinal cord injury remains a current challenge. Training these patients to successfully stand is the first step towards restoring advanced skills such as walking. To address this need, we have developed a novel robotic stand trainer that can apply controlled forces on the trunk and the pelvis of a user, while controlling the knee angle.
View Article and Find Full Text PDFThere currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements.
View Article and Find Full Text PDF