Publications by authors named "Isin B"

This study aimed to investigate whether ultrasonographic inspection of the repair site of median nerve lacerations may provide useful evidence about the functional outcome in the affected hand. Forty-three patients with complete transection of the median nerve at the distal forearm were examined at a median of 40.9 months after operation by detailed ultrasonographic imaging and clinical assessment of the affected hand by the Michigan Hand Questionnaire and Rosén-Lundborg Protocol to investigate the quality of nerve healing.

View Article and Find Full Text PDF

Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β(2)-adrenergic receptor (β(2)AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β(2)AR.

View Article and Find Full Text PDF

Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures.

View Article and Find Full Text PDF

Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability.

View Article and Find Full Text PDF

As one of the best studied members of the pharmaceutically relevant family of G-protein-coupled receptors, rhodopsin serves as a prototype for understanding the mechanism of G-protein-coupled receptor activation. Here, we aim at exploring functionally relevant conformational changes and signal transmission mechanisms involved in its photoactivation brought about through a cis-trans photoisomerization of retinal. For this exploration, we propose a molecular dynamics simulation protocol that utilizes normal modes derived from the anisotropic network model for proteins.

View Article and Find Full Text PDF

As the only member of the family of G-protein-coupled receptors for which atomic coordinates are available, rhodopsin is widely studied for insight into the molecular mechanism of G-protein-coupled receptor activation. The currently available structures refer to the inactive, dark state, of rhodopsin, rather than the light-activated metarhodopsin II (Meta II) state. A model for the Meta II state is proposed here by analyzing elastic network normal modes in conjunction with experimental data.

View Article and Find Full Text PDF

Rhodopsin is the only G protein-coupled receptor (GPCR) whose 3D structure is known; therefore, it serves as a prototype for studies of the GPCR family of proteins. Rhodopsin dysfunction has been linked to misfolding, caused by chemical modifications that affect the naturally occurring disulfide bond between C110 and C187. Here, we identify the structural elements that stabilize rhodopsin by computational analysis of the rhodopsin structure and comparison with data from previous in vitro mutational studies.

View Article and Find Full Text PDF

Influenza virus hemagglutinin (HA), a homotrimeric integral membrane glycoprotein essential for viral infection, is engaged in two biological functions: recognition of target cells' receptor proteins and fusion of viral and endosomal membranes, both requiring substantial conformational flexibility from the part of the glycoprotein. The different modes of collective motions underlying the functional mobility/adaptability of the protein are determined in the present study using an extension of the Gaussian network model (GNM) to treat concerted anisotropic motions. We determine the molecular mechanisms that may underlie HA function, along with the structural regions or residues whose mutations are expected to impede function.

View Article and Find Full Text PDF