Motivation: Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets.
Results: We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need.
During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells.
View Article and Find Full Text PDF