Publications by authors named "Isidre Mateu"

Sc is a β-emitter which has been extensively studied for nuclear medicine applications. Its promising decay characteristics [t = 3.97 h, E [Formula: see text] = 632 keV (94.

View Article and Find Full Text PDF

Tb is one of the most interesting radionuclides for theranostic applications. It is suitable for SPECT imaging and it can be used as a true diagnostic partner of the therapeutic Tb and Tb. Its production by proton irradiation using enriched Gd and Gd oxide targets is currently being investigated and represents a promising solution.

View Article and Find Full Text PDF

Er is a pure Auger-electron emitter with promising characteristics for therapeutic applications in nuclear medicine. The short penetration path and high Linear Energy Transfer (LET) of the emitted Auger electrons make Er particularly suitable for treating small tumor metastases. Several production methods based on the irradiation with charged particles of Er and Ho targets can be found in the literature.

View Article and Find Full Text PDF

RadioNuclide Therapy (RNT) in nuclear medicine is a cancer treatment based on the administration of radioactive substances that specifically target cancer cells in the patient. These radiopharmaceuticals consist of tumor-targeting vectors labeled with β, α, or Auger electron-emitting radionuclides. In this framework, Cu is receiving increasing interest as it provides β-particles accompanied by low-energy γ radiation.

View Article and Find Full Text PDF

Radiometals play a fundamental role in the development of personalized nuclear medicine. In particular, copper radioisotopes are attracting increasing interest since they offer a varying range of decay modes and half-lives and can be used for imaging (Cu, Cu, Cu and Cu) and targeted radionuclide therapy (Cu and Cu), providing two of the most promising true theranostic pairs, namely Cu/Cu and Cu/Cu. Currently, the most widely used in clinical applications is Cu, which has a unique decay scheme featuring β-, β-decay and electron capture.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists study neutron fields created by particle accelerators to help protect against radiation and improve devices that measure neutrons.
  • This research looked at two places: CERN in Geneva and a medical lab in Bern, using a special tool called DIAMON that quickly measures neutron energy without guessing.
  • The results showed that DIAMON works really well for different types of neutron fields, which is important for safely shutting down old nuclear facilities and making medical treatments.
View Article and Find Full Text PDF

The availability of novel medical radionuclides is a key point in the development of personalised nuclear medicine. In particular, copper radioisotopes are attracting considerable interest as they can be used to label various molecules of medical interest, such as proteins and peptides, and offer two of the most promising true theranostic pairs, namely Cu/Cu and Cu/Cu. Although Cu (t = 12.

View Article and Find Full Text PDF

The availability of novel radionuclides plays a fundamental role in the development of personalized nuclear medicine. In particular, there is growing interest in pairs formed by two radioisotopes of the same element, the so-called true theranostic pairs, such as Cu/Cu, Sc/Sc and Tb/Tb. In this case, the two radionuclides have identical kinetics and chemical reactivity, allowing to predict whether the patient will benefit from a therapeutic treatment on the basis of nuclear imaging data.

View Article and Find Full Text PDF

Tb [t = 5.32 d, E = 87 keV (32%); 105 keV (25%) (IAEA, 2021)] is a novel promising radionuclide for theranostic applications in nuclear medicine. Its physical properties make it suitable for single photon emission computed tomography (SPECT) imaging, while its chemistry allows it to be used as a diagnostic partner for therapeutic radiolanthanides or pseudo-radiolanthanides, such as Lu and Y.

View Article and Find Full Text PDF