Binder jetting 3D printing is an additive manufacturing technique based on the creation of a part through the selective bonding of powder with an adhesive, followed by a sintering process at high temperature to densify the material and produce parts with acceptable properties. Due to the high initial porosity in the material after sintering, which is typically around 5%, post-sintering treatments are often required to increase the material density and enhance the mechanical and fatigue properties of the final component. This paper focuses on the study of the benefits of hot isostatic pressing (HIP) after sintering on the mechanical and fatigue properties of a binder jetting Ti-6Al-4V alloy.
View Article and Find Full Text PDFAdditive manufacturing is becoming a technique with great prospects for the production of components with new designs or shapes that are difficult to obtain by conventional manufacturing methods. One of the most promising techniques for printing metallic components is binder jetting, due to its time efficiency and its ability to generate complex parts. In this process, a liquid binding agent is selectively deposited to adhere the powder particles of the printing material.
View Article and Find Full Text PDFIn the automotive industry, the use of stamped aluminium alloy components has become a very common occurrence. For the appropriate design of these components, it is necessary to know how the manufacturing process affects the material properties. In the first place, high plastic strains ( ε p ) can be generated during the stamping process, which can result in a change in the residual stress and mechanical properties in the plastically deformed areas.
View Article and Find Full Text PDF