Phys Chem Chem Phys
January 2009
Unique features of Coulomb explosion (CE) of many-electron elemental Xe(n) (n = 13-2171) clusters driven by ultraintense and ultrashort near-infrared laser pulses (peak intensities 10(15)-10(20) W cm(-2) and pulse lengths of 10-100 fs) manifest ion dynamics and energetics in the extreme, with ultrafast (5-15 A fs(-1)) velocities and ultrahigh (keV-1 MeV) energies. Relations were established between the CE attributes, obtained from molecular dynamics simulations and from electrostatic models, and the extreme cluster inner ionization levels (5-36 per ion), in conjunction with the laser parameters required for the attainment of complete outer ionization, which was approximated by cluster vertical ionization (CVI) initial conditions. Interrelationship between electron dynamics and nuclear dynamics stems from the effects of the laser pulse length on the energetics and from the characterization of the border radius for complete outer ionization.
View Article and Find Full Text PDFWe applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe(n) clusters (n=2-2171, initial cluster radius R(0)=2.16-31.0 A) driven by ultraintense infrared Gaussian laser fields (peak intensity I(M)=10(15)-10(20) W cm(-2), temporal pulse length tau=10-100 fs, and frequency nu=0.
View Article and Find Full Text PDFCoulomb explosion of completely ionized (CH4)n, (NH3)n, and (H2O)n clusters will drive tabletop nuclear reactions of protons with 12C6+, 14N7+, and 16O8+ nuclei, extending the realm of nuclear reactions driven by ultraintense laser-heterocluster interaction. The realization for nucleosynthesis in exploding cluster beams requires complete electron stripping from the clusters (at laser intensities I(M) > or = 10(19) W cm(-2)), the utilization of nanodroplets of radius 300-700 A for vertical ionization, and the attainment of the highest energies for the nuclei (i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2006
Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.
View Article and Find Full Text PDFWe address unifying features of fragmentation channels driven by long-range Coulomb or pseudo-Coulomb forces in clusters, nuclei, droplets, and optical molasses. We studied the energetics, fragmentation patterns, and dynamics of multicharged (A+)n (n=55, 135, 321) clusters. In Morse clusters the variation of the range of the pair-potential induced changes in the cluster surface energy and in the fissibility parameter X=E(Coulomb)2E(surface).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2005
Nanointerfaces of mobile, thin spherical shells of light ions that expand on the femtosecond time scale, can be produced by Coulomb explosion of extremely ionized molecular heteroclusters consisting of light and heavy ions, e.g., (D+Iq+)n (q = 7-35), which are generated in ultraintense laser fields (intensity, I, = 10(16) to 10(20) W.
View Article and Find Full Text PDFIn this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I< or =10(17) W cm(-2)), and the attainment of cluster vertical ionization (CVI) (at I=10(17) W cm(-2) for cluster radius R(0)< or =31 A). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter eta=q(C)m(A)/q(A)m(C) for (CA(4))(n) clusters (A=H,D), where q(j) and m(j) (j=A,C) are the ionic charges and masses.
View Article and Find Full Text PDFIn this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)).
View Article and Find Full Text PDFWe explore electron dynamics in molecular (CD4)(1061) clusters and elemental Xen (n=249-2171) clusters, responding to ultraintense (intensity I=10(16)-10(19) W cm(-2)) laser fields. Molecular dynamics simulations (including magnetic field and relativistic effects) and analyses of high-energy electron dynamics and nuclear ion dynamics in a cluster interacting with a Gaussian shaped laser field (frequency 0.35 fs(-1), photon energy 1.
View Article and Find Full Text PDFIn this paper we present a theoretical and computational study of extreme multielectron ionization (involving the stripping of all the electrons from light, first-row atoms, and the production of heavily charged ions, e.g., Xe(+q) (q< or =36) from heavy atoms) in elemental and molecular clusters of Xe(n),(D(2))(n), and (CD(4))(n) (n=55-1061) in ultraintense (intensity I=10(15)-10(19) W cm(-2)) laser fields.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2002
We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments.
View Article and Find Full Text PDF