The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing.
View Article and Find Full Text PDFTissues with a high turnover rate produce millions of cells daily and have abundant regenerative capacity. At the core of their maintenance are populations of stem cells that balance self-renewal and differentiation to produce the adequate numbers of specialized cells required for carrying out essential tissue functions. Here, we compare and contrast the intricate mechanisms and elements of homeostasis and injury-driven regeneration in the epidermis, hematopoietic system, and intestinal epithelium-the fastest renewing tissues in mammals.
View Article and Find Full Text PDFIntroduction: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive disorder with a progressive clinical course. In addition to symptomatic therapy, DBS has been increasingly recognized as a potential therapeutic strategy, especially in severe cases. Therefore, we wanted to report our experience regarding benefits of DBS in five PKAN cases in 3-year follow-up study.
View Article and Find Full Text PDF