Publications by authors named "Ishraq Islam"

Quantum computing (QC) has opened the door to advancements in machine learning (ML) tasks that are currently implemented in the classical domain. Convolutional neural networks (CNNs) are classical ML architectures that exploit data locality and possess a simpler structure than a fully connected multi-layer perceptrons (MLPs) without compromising the accuracy of classification. However, the concept of preserving data locality is usually overlooked in the existing quantum counterparts of CNNs, particularly for extracting multifeatures in multidimensional data.

View Article and Find Full Text PDF

The convolution operation plays a vital role in a wide range of critical algorithms across various domains, such as digital image processing, convolutional neural networks, and quantum machine learning. In existing implementations, particularly in quantum neural networks, convolution operations are usually approximated by the application of filters with data strides that are equal to the filter window sizes. One challenge with these implementations is preserving the spatial and temporal localities of the input features, specifically for data with higher dimensions.

View Article and Find Full Text PDF