Publications by authors named "Ishiura S"

The herb Ruta chalepensis L. exhibits medical effects, such as anti-inflammatory, central nervous system depressant, and antipyretic activities. However, a genetic transformation method has not yet been developed for this species.

View Article and Find Full Text PDF
Plant-based vaccines for Alzheimer's disease.

Proc Jpn Acad Ser B Phys Biol Sci

November 2019

Alzheimer's disease (AD) is one of the major causes of chronic and progressive cognitive decline, with the pathological hallmarks of senile plaques and neurofibrillary tangles. Amyloid β peptide (Aβ) is the main component of senile plaques, and the pathological load of Aβ in the brain has been shown to be a marker of the severity of AD. To prevent the accumulation of plaques, novel and safer plant-based vaccine strategies have been suggested.

View Article and Find Full Text PDF

Abnormal splicing of the chloride channel 1 (CLCN1) gene causes myotonic dystrophy type 1 (DM1). Therefore, controlling the alternative splicing process of this gene by antisense oligonucleotides can be a promising treatment for DM1. In this study, we describe an efficient phosphorodiamidate morpholino oligomer (PMO) delivery method by ultrasound-mediated bubble liposomes, which is a known gene delivery tool with ultrasound exposure, to treat skeletal muscles in a DM1 mouse model, HSA.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP) provides energy for the regulation of multiple cellular processes in living organisms. Capturing the spatiotemporal dynamics of ATP in single cells is fundamental to our understanding of the mechanisms underlying cellular energy metabolism. However, it has remained challenging to visualize the dynamics of ATP in and between distinct intracellular organelles and its interplay with other signaling molecules.

View Article and Find Full Text PDF

Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12.

View Article and Find Full Text PDF

Body size is one of the basic traits of animals and is regulated to adapt to the environment. Animals perceive environmental stimuli with sensory neurons, and signals from the nervous system alter the size of organs, thus regulating body size. The model animal Caenorhabditis elegans is particularly suited for genetic analysis of body size regulation, and has already contributed to the elucidation of various genetic pathways that regulate body size.

View Article and Find Full Text PDF

The γ-secretase complex comprises presenilin (PS), nicastrin (NCT), anterior pharynx-defective 1 (Aph1), and presenilin enhancer 2 (Pen2). PS has two homologues, PS1 and PS2. Aph1 has two isoforms, Aph1a and Aph1b, with the former existing as two splice variants Aph1aL and Aph1aS.

View Article and Find Full Text PDF

This data article tested whether polymorphisms within the dopamine D4 receptor (DRD4) gene promoter can lead to differences in the promoter activity. The variants, a 120-bp variable number tandem repeat (VNTR), -906 T/C, -809 G/A, -616G/C, and -521C/T, were introduced into the DRD4 promoter and the promoter activity was measured in a neural cell line using the luciferase assay. However, no differences were detected among the haplotypes investigated, and the in vitro data obtained from our protocol could not support the involvement of DRD4 promoter polymorphisms in heritable human traits.

View Article and Find Full Text PDF

Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A.

View Article and Find Full Text PDF

The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C.

View Article and Find Full Text PDF

γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast.

View Article and Find Full Text PDF

Expression of () in skeletal muscle is driven by alternative splicing, a process regulated in part by RNA-binding protein families MBNL and CELF. Aberrant splicing of produces many mRNAs, which were translated into inactive proteins, resulting in myotonia in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. This increase in abnormal splicing variants containing exons 6B, 7A or the insertion of a TAG stop codon just before exon 7 leads to a decrease in expression of the normal splice pattern.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a genetic disorder in which multiple genes are aberrantly spliced. Sarco/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) is one of these genes, and it encodes a P-type ATPase. SERCA1 transports Ca(2+) from the cytosol to the lumen, and is involved in muscular relaxation.

View Article and Find Full Text PDF

CHRNA1 encodes the α subunit of nicotinic acetylcholine receptors (nAChRs) and is expressed at the neuromuscular junction. Moreover, it is one of the causative genes of Congenital Myasthenic Syndromes (CMS). CHRNA1 undergoes alternative splicing to produce two splice variants: P3A(-), without exon P3A, and P3A(+), with the exon P3A.

View Article and Find Full Text PDF

According to the amyloid hypothesis, amyloid β accumulates in brains with Alzheimer's disease (AD) and triggers cell death and memory deficit. Previously, we developed a rice Aβ vaccine expressing Aβ, which reduced brain Aβ levels in the Tg2576 mouse model of familial AD. We used senescence-accelerated SAMP8 mice as a model of sporadic AD and investigated the relationship between Aβ and oxidative stress.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is an RNA-mediated disorder characterized by muscle weakness, cardiac defects and multiple symptoms and is caused by expanded CTG repeats within the 3' untranslated region of the DMPK gene. In this study, we found abnormal splicing of actin-binding LIM protein 1 (ABLIM1) in skeletal muscles of patients with DM1 and a DM1 mouse model (HSA(LR) ). An exon 11 inclusion isoform is expressed in skeletal muscle and heart of non-DM1 individuals, but not in skeletal muscle of patients with DM1 or other adult human tissues.

View Article and Find Full Text PDF

In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization.

View Article and Find Full Text PDF

DTNBP1 is a key candidate gene associated with schizophrenia. The expression of its protein product, dysbindin-1, is altered in the brains of schizophrenic patients; however, the physiological functions of dysbindin-1 in the central nervous system are unclear. Several studies have shown that both dysbindin-1 and histone deacetylase 3 (HDAC3) can be phosphorylated by the DNA-dependent protein kinase complex.

View Article and Find Full Text PDF

Formation of the phosphorylated protein γ-H2AX is a well-established marker of DNA strand breakage induced by DNA-damaging compounds. Many of these genotoxic compounds also inhibit cell division, leading to arrest at specific points in the cell cycle. Detection of γ-H2AX in combination with cell cycle arrest may therefore be useful for estimating the genotoxicity of experimental compounds.

View Article and Find Full Text PDF

Myotonic dystrophy (DM) is a genetic, progressive, multisystemic disease with muscular disorder as its primary symptom. There are two types of DM (DM1 and DM2) caused by mutations in different genes, and in Japan, DM occurs with an incidence of approximately 1 in 20,000. The pathogenic mechanism underlying the disease is RNA toxicity caused by transcripts of aberrantly elongated CTG or CCTG repeats located in the 3' untranslated region or in the intron.

View Article and Find Full Text PDF

It is common for neurotransmitters to possess multiple receptors that couple to the same intracellular signaling molecules. This study analyzes two highly homologous G-protein-coupled octopamine receptors using the model animal Caenorhabditis elegans. In C.

View Article and Find Full Text PDF

Transcription factor Hesr family genes are important in neuronal development. We demonstrated previously that HESR1 and HESR2 modified expression of the dopamine transporter (DAT) reporter gene. HESR-family genes have been investigated in development, but their functions, especially in relation to behaviors regulated by dopamine, in adult animals remain unclear.

View Article and Find Full Text PDF

We dramatically improved a plasmid-isolation protocol based on the popular alkaline-sodium dodecyl sulfate plasmid isolation method. Our modified method provides significant time and cost savings. We used a modified solution during the neutralization step, which allowed us to skip several subsequent handling steps, saving a great amount of time.

View Article and Find Full Text PDF

We have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood-brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position.

View Article and Find Full Text PDF

No effective treatment was available for myotonic dystrophy, even in animal model. We have established a new antisense oligonucleotide delivery to skeletal muscle of mice with bubble liposomes, and led to increased expression of chloride channel (CLCN1) protein and the amelioration of myotonia. In other experiments, we also identified small molecule compounds that correct aberrant splicing of Clcn1 gene.

View Article and Find Full Text PDF