Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging.
View Article and Find Full Text PDFBiomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable enzymatic biodegradation of composite hydrogels.
View Article and Find Full Text PDFSkin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes.
View Article and Find Full Text PDFPeroxynitrite anion (ONOO) is an important in vivo oxidative stress biomarker whose aberrant levels have pathophysiological implications. In this study, an electrochemical sensor for ONOO detection was developed based on graphene nanoplatelets-cerium oxide nanocomposite (GNP-CeO) incorporated polyaniline (PANI) conducting hydrogels. The nanocomposite-hydrogel platform exhibited distinct synergistic advantages in terms of large electroactive surface coverage and providing a conductive pathway for electron transfer.
View Article and Find Full Text PDFACS Biomater Sci Eng
June 2021
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications.
View Article and Find Full Text PDFA fluorescent nanoprobe based on copper nanoclusters (CuNCs) has been developed for ratiometric detection of hydroxyl radicals (OH) and superoxide anion radicals (O). Two differently luminescent CuNCs, namely cyan-emissive poly(methacrylic acid)-protected copper nanoclusters (PCuNCs) and orange-emissive bovine serum albumin-protected CuNCs (BCuNCs), were conjugated to obtain a hybrid, dual-emission nanoprobe (PCuNCs-BCuNCs) with the corresponding peaks at 445 nm and 652 nm at an excitation wavelength of 360 nm. In particular, the fluorescence peak at 445 nm gradually enhanced with the incremental addition of OH and O.
View Article and Find Full Text PDFDespite recent advancements in the field of microfluidic paper-based analytical devices (μPADs), a key challenge remains in developing a simple and efficient μPAD with customized imaging capabilities for antioxidant assays. In the present study, we report a facile approach for μPAD fabrication through the application of transparent nail paint leading to creation of hydrophobic barriers and well-defined channels. The resultant μPADs were then characterized through scanning electron microscopy and contact angle measurements.
View Article and Find Full Text PDFJ Photochem Photobiol B
September 2020
Nanotechnology driven cancer theranostics hold potential as promising future clinical modalities. Currently, there is a strong emphasis on the development of combinational modalities, especially for cancer treatment. In this study, we present a topical hydrogel patch for nanomaterial-assisted photothermal therapeutics as well as for on-demand drug delivery application.
View Article and Find Full Text PDFEscalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems.
View Article and Find Full Text PDFIn the present study, magnetically separable hydrogel beads of ionically cross-linked alginate were functionalized with polydopamine (PDA). The rationale behind this was to enhance the structural stability and antibacterial profile of PDA/Alg/FeO beads (K3). Incorporation of superparamagnetic magnetite (FeO) nanoparticles endowed the hydrogel beads with magnetism.
View Article and Find Full Text PDFMultifunctional hydrogels offer a seemingly efficient system for delivery of drugs and bioimaging modalities. The present study deals with the facile development of chitosan-based hydrogel formulation composed of highly fluorescent carbon dots (CDs) and loaded with a model anticancer drug, 5-Fluorouracil (5-FU). Herein, CDs were embedded firmly within the hydrogel matrices (CD-HY) via non-covalent interactions during the ionic cross-linking reaction.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2016
Proper choice and design of nanocarriers is imperative to achieve the desired therapeutic benefits. Herein, we report a facile methodology for preparation of chemically cross-linked AG-G5 hybrid nanogels of alginate (AG) and G5.0 poly(amidoamine) (PAMAM) dendrimer via carbodiimide chemistry.
View Article and Find Full Text PDFHerein, we report the development of a poly(amidoamine) (PAMAM) dendrimer based multicomponent therapeutic agent for in vitro cancer therapy applications. In this approach, Generation 5 (G5) PAMAM dendrimers stabilizing silver nanoparticle surface (DsAgNPs) were used to encapsulate anticancer drug 5-fluorouracil (5-FU) to attain synergism in cancer cells. 5-FU loaded DsAg nanocomposites (5-FU@DsAgNCs) were characterized by UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and nuclear magnetic resonance measurements.
View Article and Find Full Text PDFFerritin is a ubiquitous iron storage protein responsible for maintaining the iron homeostasis in living organism and thereby protects the cell from oxidative damage. The ferritin protein cages have been used as a reaction vessel for the synthesis of various non-native metallic nanoparticles inside its core and also used as a nanocarrier for various applications. Lack of suitable non-viral carrier for targeted delivery of anticancer drugs and imaging agents is the major problem in cancer therapy and diagnosis.
View Article and Find Full Text PDFAdvanced nanomaterials integrating imaging and therapeutic modalities on a single platform offers a new horizon in current cancer treatment strategies. Recently, carbon dots (CQDs) have been successfully employed for bioimaging of cancer cells. In the present study, luminescent CQDs with anionic terminus and cationic acetylated G5 poly(amido amine) (G5-Ac85) dendrimers were combined via noncovalent interactions to form self-assembled fluorescent hybrids.
View Article and Find Full Text PDFCurrently the applications of silver nanoparticles (Ag NPs) are gaining overwhelming response due to the advancement of nanotechnology. However, only limited information is available with regard to their toxicity mechanism in different species. It is very essential to understand the complete molecular mechanism to explore the functional and long term applications of Ag NPs.
View Article and Find Full Text PDFCarbon dots (CDs) are novel bioimaging tools with fascinating fluorescence properties. We report here the development of novel CDs decorated on a silver-zinc oxide (CD-Ag@ZnO) nanocomposite (NC) consisting of highly fluorescent CDs and Ag@ZnO. The CD-Ag@ZnO NC was characterized by various analytical techniques.
View Article and Find Full Text PDFEmergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDF