Motivation: Biological experiments including proteomics and transcriptomics approaches often reveal sets of proteins that are most likely to be involved in a disease/disorder. To understand the functional nature of a set of proteins, it is important to capture the function of the proteins as a group, even in cases where function of individual proteins is not known. In this work, we propose a model that takes groups of proteins found to work together in a certain biological context, integrates them into functional relevance networks, and subsequently employs an iterative inference on graphical models to identify group functions of the proteins, which are then extended to predict function of individual proteins.
View Article and Find Full Text PDFMotivation: Moonlighting proteins (MPs) are an important class of proteins that perform more than one independent cellular function. MPs are gaining more attention in recent years as they are found to play important roles in various systems including disease developments. MPs also have a significant impact in computational function prediction and annotation in databases.
View Article and Find Full Text PDFBackground: The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions.
View Article and Find Full Text PDFBackground: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging.
View Article and Find Full Text PDFReconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores.
View Article and Find Full Text PDFMotivation: Moonlighting proteins (MPs) show multiple cellular functions within a single polypeptide chain. To understand the overall landscape of their functional diversity, it is important to establish a computational method that can identify MPs on a genome scale. Previously, we have systematically characterized MPs using functional and omics-scale information.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
May 2019
Proteins carry out their function in a cell through interactions with other proteins. A large scale protein-protein interaction (PPI) network of an organism provides static yet an essential structure of interactions, which is valuable clue for understanding the functions of proteins and pathways. PPIs are determined primarily by experimental methods; however, computational PPI prediction methods can supplement or verify PPIs identified by experiment.
View Article and Find Full Text PDFBackground: Functional annotation of novel proteins is one of the central problems in bioinformatics. With the ever-increasing development of genome sequencing technologies, more and more sequence information is becoming available to analyze and annotate. To achieve fast and automatic function annotation, many computational (automated) function prediction (AFP) methods have been developed.
View Article and Find Full Text PDFMoonlighting proteins perform multiple independent cellular functions within one polypeptide chain. Moonlighting proteins switch functions depending on various factors including the cell-type in which they are expressed, cellular location, oligomerization status and the binding of different ligands at different sites. Although an increasing number of moonlighting proteins have been experimentally identified in recent years, the quantity of known moonlighting proteins is insufficient to elucidate their overall landscape.
View Article and Find Full Text PDFUnlabelled: Protein function prediction (PFP) is an automated function prediction method that predicts Gene Ontology (GO) annotations for a protein sequence using distantly related sequences and contextual associations of GO terms. Extended similarity group (ESG) is another GO prediction algorithm that makes predictions based on iterative sequence database searches. Here, we provide interactive web servers for the PFP and ESG algorithms that are equipped with an effective visualization of the GO predictions in a hierarchical topology.
View Article and Find Full Text PDFBackground: Many Automatic Function Prediction (AFP) methods were developed to cope with an increasing growth of the number of gene sequences that are available from high throughput sequencing experiments. To support the development of AFP methods, it is essential to have community wide experiments for evaluating performance of existing AFP methods. Critical Assessment of Function Annotation (CAFA) is one such community experiment.
View Article and Find Full Text PDF