Publications by authors named "Ishita Ahuja"

Article Synopsis
  • Crop residues contribute carbon and nitrogen to soils, significantly influencing nitrous oxide (N₂O) emissions, but current methods solely focus on N inputs without accounting for residue characteristics.
  • Different types of crop residues, especially immature ones, have varying effects on N₂O emissions due to their biochemical qualities, highlighting the need to differentiate between mature and immature residues in emission assessments.
  • To improve N₂O emission accounting, further research is required to establish emission factors for different residue types, understand emissions from belowground residues, enhance data on residue management, and evaluate the long-term impacts of residue addition on soil N₂O emissions.
View Article and Find Full Text PDF

Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (NO). Previous meta-analyses have linked various biochemical properties of crop residues to NO emissions, but the relationships between these properties have been overlooked, hampering our ability to predict NO emissions from specific residues.

View Article and Find Full Text PDF

The glucosinolate-myrosinase system is a well-known plant chemical defence system. Two functional myrosinase-encoding genes, THIOGLUCOSIDASE 1 () and THIOGLUCOSIDASE 2 (), express in aerial tissues of Arabidopsis. expresses in guard cells (GCs) and is also a highly abundant protein in GCs.

View Article and Find Full Text PDF

This paper reviews relevant knowledge about the production and uses of fertilizers from fish and fish waste (FW) that may be applicable for certified organic farming, with a focus on crop and horticultural plants. Fish industries generate a substantial amount of FW. Depending on the level of processing or type of fish, 30-70% of the original fish is FW.

View Article and Find Full Text PDF

The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data.

View Article and Find Full Text PDF

Both physical barriers and reactive phytochemicals represent two important components of a plant's defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants.

View Article and Find Full Text PDF

The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.

View Article and Find Full Text PDF

Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae.

View Article and Find Full Text PDF

Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines.

View Article and Find Full Text PDF

Environmental stress factors such as drought, elevated temperature, salinity and rising CO₂ affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food security. Plant adaptation to stress involves key changes in the '-omic' architecture.

View Article and Find Full Text PDF

Many plant phytochemicals constitute binary enzyme-glucoside systems and function in plant defence. In brassicas, the enzyme myrosinase is confined to specific myrosin cells that separate the enzyme from its substrate; the glucosinolates. The myrosinase-catalysed release of toxic and bioactive compounds such as isothiocyanates, upon activation or tissue damage, has been termed 'the mustard oil bomb' and characterized as a 'toxic mine' in plant defence.

View Article and Find Full Text PDF