Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature hypothesized but not proven to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched closed loop over a slow timescale (1 s), then rapidly open it (10 µs), achieving heights of 20 body lengths (BL) and generating ∼ 10 W/Kg of power.
View Article and Find Full Text PDFA wide variety of engineered and natural systems are modeled as networks of coupled nonlinear oscillators. In nature, the intrinsic frequencies of these oscillators are not constant in time. Here, we probe the effect of such a temporal heterogeneity on coupled oscillator networks through the lens of the Kuramoto model.
View Article and Find Full Text PDFThe numerical, analytical, and experimental analyses are presented for synchronizing two rotors under the Yukawa interaction. We report that the rotors exhibit in-phase and mixed-phase measure synchronizations for a pair of coupled rotors. Here, the analytical condition for synchronization is derived, tested numerically, and confirmed experimentally using coupled camphor infused rotors as a test bed.
View Article and Find Full Text PDFRecently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the "blob", which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape.
View Article and Find Full Text PDFIntegr Comp Biol
December 2023
Many organisms exhibit collecting and gathering behaviors as a foraging and survival method. Benthic macroinvertebrates are classified as collector-gatherers due to their collection of particulate matter. Among these, the aquatic oligochaete Lumbriculus variegatus (California blackworms) demonstrates the ability to ingest both organic and inorganic materials, including microplastics.
View Article and Find Full Text PDFMany organisms exhibit collecting and gathering behaviors as a foraging and survival method. Certain benthic macroinvertebrates are classified as collector-gatherers due to their collection of particulate matter as a food source, such as the aquatic oligochaete (California blackworms). Blackworms demonstrate the ability to ingest organic and inorganic materials, including microplastics, but previous work has only qualitatively described their possible collecting behaviors for such materials.
View Article and Find Full Text PDFThe design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable 'smart' materials. However, the global emergent mechanics that arise from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in an collection of u-shaped particles ("smarticles") and in living entangled aggregate of worm blobs ().
View Article and Find Full Text PDFSurfers at the air-water interface form a large subset of the domain of active matter systems. They range from the water strider in the biological world to soluto-capillary effect driven artificial boats. In this work, we propose a general protocol to capture soluto-capillary effect driven interfacial surfers.
View Article and Find Full Text PDFWe present numerical and experimental results for the generation of aperiodic motion in coupled active rotators. The numerical analysis is presented for two point particles constrained to move on a unit circle under the Yukawa-like interaction. Simulations exhibit that the collision among the rotors results in chaotic motion of the rotating point particles.
View Article and Find Full Text PDFWe report experimental and numerical evidence of synchronized spiking phenomena provoked by the interaction of two bidirectionally coupled electrochemical systems subjected to independent stochastic input signals. To this end, the anodic potentials of two such systems were diffusively coupled. The corresponding anodic currents of these systems exhibited excitable fixed point behavior in the vicinity of a homoclinic bifurcation.
View Article and Find Full Text PDFIn this work, we report a quenching of oscillations observed upon coupling two chemomechanical oscillators. Each one of these oscillators consists of a drop of liquid metal submerged in an oxidizing solution. These pseudoidentical oscillators have been shown to exhibit both periodic and aperiodic oscillatory behavior.
View Article and Find Full Text PDFThe effect of interventions on the progression of an epidemic is studied by numerically modeling attributes, such as lockdowns and vaccinations within a stochastic, highly connected, mobile community using an agent-based model. Based on real life assumptions, we are able to gauge the effectiveness of various strategies to contain the spread of a disease through a population. The fine-tuning of control parameters makes the model coherent with real life scenarios and robust from a policy-maker's perspective.
View Article and Find Full Text PDFWe report experiments on an active camphor rotor. A camphor rotor is prepared by infusing camphor on a regular rectangular paper strip. It performs self-propelled motion at the air-water interface due to Marangoni driven forces.
View Article and Find Full Text PDFA chimeralike state is the spatiotemporal pattern in an ensemble of homogeneous coupled oscillators, described as the emergence of coexisting coherent (synchronized) and incoherent (unsynchronized) groups. We demonstrate the existence of these states in three active camphor ribbons, which are camphor infused rectangular pieces of paper. These pinned ribbons rotate on the surface of the water due to Marangoni effect driven forces generated by the surface tension gradients.
View Article and Find Full Text PDFAvalanche dynamics in an ensemble of self-propelled camphor boats are studied. The self-propelled agents are camphor infused circular paper disks moving on the surface of water. The ensemble exhibits bursts of activity in the autonomous state triggered by stochastic fluctuations.
View Article and Find Full Text PDFThe rhythmic beating motion of autonomously motile filaments has many practical applications. Here, we present an experimental study on a filament made of camphor infused paper disks, stitched together adjacent to each other using nylon thread. The filament displays spontaneous translatory motion when it is placed on the surface of water due to the surface tension gradients created by camphor molecules on the water surface.
View Article and Find Full Text PDFWe present numerical results obtained from the modeling of a stochastic, highly connected, and mobile community. The spread of attributes like health and disease among the community members is simulated using cellular automata on a planar two-dimensional surface. With remarkably few assumptions, we are able to predict the future course of propagation of such a disease as a function of time and the fine-tuning of parameters related to interactions among the automata.
View Article and Find Full Text PDFWe present experiments on multiple pinned self-propelled camphor ribbons, which is a rectangular piece of paper with camphor infused in its matrix. Experiments were performed on three, four, and five ribbons placed in linear and polygonal geometries. The pinned ribbons rotate on the surface of water, due to the surface tension gradient introduced by the camphor layer in the neighborhood of the ribbon.
View Article and Find Full Text PDFIn contrast with the conventionally observed mechanism of stochastic resonance (SR) wherein the level of additive noise is systematically varied with a fixed set-point parameter, in this work we report the emergence of the SR phenomena in an electrochemical system maintaining the same level of noise and varying the parametric distance from a homoclinic bifurcation inherent to the system. The experimental system involves the corrosion of a metal disk in an acidic medium under potentiostatic conditions. The applied potential is used as a control parameter and the anodic current generated during the electrodissolution of the metal is the accessible system variable.
View Article and Find Full Text PDFExperiments on interacting pinned self-propelled rotators are presented. The rotators are made from paper with camphor infused in its matrix. The ribbons rotate due to Marangoni effect driven forces arising by virtue of surface tension gradients.
View Article and Find Full Text PDFIn the present paper, the possibility of invoking stochastic resonance (SR, periodic and aperiodic) by regulating the operating value of an appropriate parameter is explored. The operating values of these parameters are defined as the set point of the system throughout the present paper. Brusselator, a mathematical model [I.
View Article and Find Full Text PDFPeriodic and Aperiodic Stochastic Resonance (SR) and Deterministic Resonance (DR) are studied in this paper. To check for the ubiquitousness of the phenomena, two unrelated systems, namely, FitzHugh-Nagumo and a particle in a bistable potential well, are studied. Instead of the conventional scenario of noise amplitude (in the case of SR) or chaotic signal amplitude (in the case of DR) variation, a tunable system parameter ("a" in the case of FitzHugh-Nagumo model and the damping coefficient "j" in the bistable model) is regulated.
View Article and Find Full Text PDFIn this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V_{0}) in the cell is chosen such that the anodic current (I) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals.
View Article and Find Full Text PDF