Publications by authors named "Isha H Jain"

We present replication-aware single-molecule accessibility mapping (RASAM), a method to nondestructively measure replication status and protein-DNA interactions on chromatin genome-wide. Using RASAM, we uncover a genome-wide state of single-molecule "hyperaccessibility" post-replication that resolves over several hours. Combining RASAM with cellular models for rapid protein degradation, we demonstrate that histone chaperone CAF-1 reduces nascent chromatin accessibility by filling single-molecular "gaps" and generating closely spaced dinucleosomes on replicated DNA.

View Article and Find Full Text PDF

Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored.

View Article and Find Full Text PDF

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen.

View Article and Find Full Text PDF

Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells.

View Article and Find Full Text PDF

Nature has evolved creative ways to maintain oxygen homeostasis, but what happens when these adaptations are insufficient? Here we discuss biochemical failure points across the oxygen spectrum from 'too little' to 'too much' oxygen and their potential contributions to cardiovascular disease.

View Article and Find Full Text PDF

Unlabelled: The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression.

View Article and Find Full Text PDF

Neuroendocrine (NE) cells are epithelial cells that possess many of the characteristics of neurons, including the presence of secretory vesicles and the ability to sense environmental stimuli. The normal physiologic functions of solitary airway NE cells remain a mystery. We show that mouse and human airway basal stem cells sense hypoxia.

View Article and Find Full Text PDF

Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia.

View Article and Find Full Text PDF

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS.

View Article and Find Full Text PDF

Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease.

View Article and Find Full Text PDF

The most common pediatric mitochondrial disease is Leigh syndrome, an episodic, subacute neurodegeneration that can lead to death within the first few years of life, for which there are no proven general therapies. Mice lacking the complex I subunit, Ndufs4, develop a fatal progressive encephalopathy resembling Leigh syndrome and die at ≈60 d of age. We previously reported that continuously breathing normobaric 11% O from an early age prevents neurological disease and dramatically improves survival in these mice.

View Article and Find Full Text PDF

Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability.

View Article and Find Full Text PDF

Many cyanobacteria have been shown to harbor multiple chromosome copies per cell, yet little is known about the organization, replication, and segregation of these chromosomes. Here, we visualize individual chromosomes in the cyanobacterium Synechococcus elongatus via time-lapse fluorescence microscopy. We find that chromosomes are equally spaced along the long axis of the cell and are interspersed with another regularly spaced subcellular compartment, the carboxysome.

View Article and Find Full Text PDF

Background: Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation sequencing.

Results: We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts.

View Article and Find Full Text PDF