Objectives: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagnostic performance of a recently updated deep learning model (CorEx-2.0) for quantifying coronary stenosis, compared separately with two expert CCTA readers as references.
View Article and Find Full Text PDFCoronary artery disease (CAD) affects over 200 million individuals globally, accounting for approximately 9 million deaths annually. Patients living with diabetes mellitus exhibit an up to fourfold increased risk of developing CAD compared to individuals without diabetes. Furthermore, CAD is responsible for 40 to 80 percent of the observed mortality rates among patients with type 2 diabetes.
View Article and Find Full Text PDFMedical datasets are vital for advancing Artificial Intelligence (AI) in healthcare. Yet biases in these datasets on which deep-learning models are trained can compromise reliability. This study investigates biases stemming from dataset-creation practices.
View Article and Find Full Text PDFCoronary CT angiography (CCTA) offers an efficient and reliable tool for the non-invasive assessment of suspected coronary artery disease through the analysis of coronary artery plaque and stenosis. However, the detailed manual analysis of CCTA is a burdensome task requiring highly skilled experts. Recent advances in artificial intelligence (AI) have made significant progress toward a more comprehensive automated analysis of CCTA images, offering potential improvements in terms of speed, performance and scalability.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
J Med Imaging (Bellingham)
September 2024
Background: Currently available tools for noninvasive motility quantification of the small intestine are limited to dynamic 2D MRI scans, which are limited in their ability to differentiate between types of intestinal motility.
Purpose: To develop a method for quantification and characterization of small intestinal motility in 3D, capable of differentiating motile, non-motile and peristaltic motion patterns.
Study Type: Prospective.
Background And Objectives: Artificial intelligence (AI) is revolutionizing Magnetic Resonance Imaging (MRI) along the acquisition and processing chain. Advanced AI frameworks have been applied in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. However, existing frameworks are often designed to perform tasks independently of each other or are focused on specific models or single datasets, limiting generalization.
View Article and Find Full Text PDFPurpose: Automatic comprehensive reporting of coronary artery disease (CAD) requires anatomical localization of the coronary artery pathologies. To address this, we propose a fully automatic method for extraction and anatomical labeling of the coronary artery tree using deep learning.
Approach: We include coronary CT angiography (CCTA) scans of 104 patients from two hospitals.
Aims: The study aimed, firstly, to validate automatically and visually scored coronary artery calcium (CAC) on low-dose computed tomography (CT) (LDCT) scans with a dedicated calcium scoring CT (CSCT) scan and, secondly, to assess the added value of CAC scored from LDCT scans acquired during [15O]-water-positron emission tomography (PET) myocardial perfusion imaging (MPI) on prediction of major adverse cardiac events (MACE).
Methods And Results: Five hundred seventy-two consecutive patients with suspected coronary artery disease, who underwent [15O]-water-PET MPI with LDCT and a dedicated CSCT scan were included. In the reference CSCT scans, manual CAC scoring was performed, while LDCT scans were scored visually and automatically using deep learning approach.
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN.
View Article and Find Full Text PDFBackground: Thoracic radiotherapy may damage the myocardium and arteries, increasing cardiovascular disease (CVD) risk. Women with a high local breast cancer (BC) recurrence risk may receive an additional radiation boost to the tumor bed.
Objective: We aimed to evaluate the CVD risk and specifically ischemic heart disease (IHD) in BC patients treated with a radiation boost, and investigated whether this was modified by age.
Background: Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias.
Methods: A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed.
Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFAccurate prediction of fetal weight at birth is essential for effective perinatal care, particularly in the context of antenatal management, which involves determining the timing and mode of delivery. The current standard of care involves performing a prenatal ultrasound 24 hours prior to delivery. However, this task presents challenges as it requires acquiring high-quality images, which becomes difficult during advanced pregnancy due to the lack of amniotic fluid.
View Article and Find Full Text PDFCoronary artery disease (CAD) remains the leading cause of death worldwide. Patients with suspected CAD undergo coronary CT angiography (CCTA) to evaluate the risk of cardiovascular events and determine the treatment. Clinical analysis of coronary arteries in CCTA comprises the identification of atherosclerotic plaque, as well as the grading of any coronary artery stenosis typically obtained through the CAD-Reporting and Data System (CAD-RADS).
View Article and Find Full Text PDFBackground: Fetal weight is currently estimated from fetal biometry parameters using heuristic mathematical formulas. Fetal biometry requires measurements of the fetal head, abdomen, and femur. However, this examination is prone to inter- and intraobserver variability because of factors, such as the experience of the operator, image quality, maternal characteristics, or fetal movements.
View Article and Find Full Text PDFLabel noise hampers supervised training of neural networks. However, data without label noise is often infeasible to attain, especially for medical tasks. Attaining high-quality medical labels would require a pool of experts and their consensus reading, which would be extremely costly.
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2024
Recent works in medical image registration have proposed the use of Implicit Neural Representations, demonstrating performance that rivals state-of-the-art learning-based methods. However, these implicit representations need to be optimized for each new image pair, which is a stochastic process that may fail to converge to a global minimum. To improve robustness, we propose a deformable registration method using pairs of cycle-consistent Implicit Neural Representations: each implicit representation is linked to a second implicit representation that estimates the opposite transformation, causing each network to act as a regularizer for its paired opposite.
View Article and Find Full Text PDFCT perfusion imaging is important in the imaging workup of acute ischemic stroke for evaluating affected cerebral tissue. CT perfusion analysis software produces cerebral perfusion maps from commonly noisy spatio-temporal CT perfusion data. High levels of noise can influence the results of CT perfusion analysis, necessitating software tuning.
View Article and Find Full Text PDF