Publications by authors named "Iseul Lim"

In the present study, a solution-processed organic semiconductor based on indolocarbazole derivative (heptazole) is introduced as a p-type donor material for a bulk-heterojunction photovoltaic device. The heptazole has an optical band gap of 2.97 eV, and its highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels are compactable with the PC60BM to construct a donor-acceptor heterojuction for energy harvesting and transfer.

View Article and Find Full Text PDF

In the present work, porous 3D CdO-microstructured electrode obtained by pyrolysis of 3D CdCO3 microstructures is self-sensitized with CdSe using an ion exchange reaction. After sensitization, an interfacial treatment of the CdO-CdSe interface is performed by depositing a thin film of PEDOT using a photoinduce polymerization route. The microstructured electrode before and after interfacial treatment is characterized using field-emission scanning microscope, energy dispersive X-ray analyzer, contact angle measurement, UV-Visible absorption spectrophotometer and X-ray photoelectron spectrometer.

View Article and Find Full Text PDF

PbS quantum dot-sensitized solar cells (QDSCs) with a photovoltaic conversion efficiency (η) of 5.73% have been fabricated by applying Au/CuS/FTO as a counter electrode (CE), post-annealing the deposited PbS QDs, and introducing the bilayered TiO2 nanostructure as a photoanode.

View Article and Find Full Text PDF

A new indolocabazole derivative possessing an extended aromatic core and solubilizing long aliphatic chains effectively self-assembles and crystallizes within the nanoscale channels to form single-crystal nanowires via a direct printing method from an ink solution. Single-crystal organic nanowire transistor arrays based on the π-extended indolocarbazole derivative exhibit an excellent hole mobility of 1.5 cm² V⁻¹ s⁻¹ and outstanding environmental stability.

View Article and Find Full Text PDF

Thin films of nanocrystalline CuInSe2 were prepared on glass substrates using chemical bath deposition in acidic medium at room temperature. Thickness of the chemically deposited CuInSe2 thin films was approximately 100 nm which composed of closely packed irregular grains of approximately 100-120 nm in diameter. X-ray diffraction pattern of CuInSe2 thin films showed nanocrystalline structure with (112) preferential orientation.

View Article and Find Full Text PDF

Chemical bath deposition is an attractive technique to form single- and multilayered metal oxide/chalcogenide films on electrode surfaces. However, the occurrence of desorption and/or ion-exchange reaction during subsequent chemical bath deposition has so far limited preparation of multilayered metal oxide/chalcogenide films. In this paper, we report a method to prevent desorption and ion-exchange reaction of metal oxide/chalcogenide on electrode surfaces using a polyelectrolyte multilayer during sequential chemical bath deposition.

View Article and Find Full Text PDF

A thin film of iodine doped polythiophene was grown photoelectrochemically around the dye-sensitized TiO(2) nanoparticles in a Grätzel cell, and the effect of iodine doping level on the cell performance was investigated using X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and photovoltage decay. At an optimum doping level, the cell demonstrated the enhanced energy conversion efficiency by 27.52% compared to the cell without polythiophene.

View Article and Find Full Text PDF

ZnO nanoparticles (NPs) coated with amorphous and crystalline CdS quantum dots (QDs) were successfully synthesized through chemical bath deposition (CBD) process. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been utilized to characterize the samples morphology and structural properties. The conduction band of CdS QDs is much higher than the ZnO conduction band facilitates electron transfer process through cascade system.

View Article and Find Full Text PDF